共查询到20条相似文献,搜索用时 15 毫秒
1.
滚动轴承的故障信号往往是微弱的周期信号,而混沌振子对特定频率的微弱周期信号十分敏感,可以有效地检测出故障信号.介绍了混沌振子的数学模型和基本检测原理,以及策动力临界阈值的确定方法.将混沌振子检测法应用于滚动轴承外圈、内圈和滚动体故障信号的检测中,通过输出相图的变化来判断故障信号是否存在,有效地实现了对滚动轴承故障信号的检测. 相似文献
2.
电机滚动轴承发生故障时的信号是非平稳的,小波包变换对故障特征提取有明显的优势,给出了利用小波包对故障信号进行分析的方法。确定轴承参数以及对故障信号的采集,并计算各类故障特征频率,选择小波基和确定最佳的分解层数,之后在Matlab软件环境下对信号进行小波包分解和重构,得到滚动轴承各类故障信号的功率谱,最后把实验结果与计算结果做对比,证实了该方法可以有效地把轴承中的故障信息成分检测出来,从而判断滚动轴承的故障类型。 相似文献
3.
呼吸音信号的包络特征提取方法 总被引:1,自引:0,他引:1
李圣君 《计算机工程与应用》2008,44(32):151-154
针对时变宽带的呼吸音信号,在分析传统Hilbert变换方法提取包络的缺点基础上,提出基于复小波变换的呼吸音信号包络特征提取方法。选取Morlet复小波,以适当的尺度对预处理后的呼吸音数据进行变换得到包络,提取包络的统计量和能量作为特征,构造BP分类神经网络的输入矢量,经训练识别取得较好分类效果。研究表明该文的特征提取方法是行之有效的。 相似文献
4.
针对不同轴承数据特征选择困难和单个分类器方法在滚动轴承故障诊断中精度较低的问题,提出了一种基于分类回归树(CART)的随机森林滚动轴承故障诊断算法。随机森林是包含了多种分类器的集成学习方法。通过随机森林的“集成”思想来提高滚动轴承故障诊断的精度。从滚动轴承的振动信号中提取时域统计指标,将其作为特征向量,利用随机森林(Random Forest)对滚动轴承故障进行诊断。利用SQI-MFS实验平台的轴承数据,与传统分类器(SVM、kNN和ANN)以及单个分类回归树的诊断结果相比,随机森林算法具有比较高的诊断精度。 相似文献
5.
针对滚动轴承振动信号故障特征信息往往被强背景噪声淹没的问题,提出一种基于奇异值分解和形态滤波的振动信号故障特征提取方法。该方法利用信号时间序列重构的吸引子轨迹矩阵奇异值分布特征与信号自身特征的关系,选择轨迹矩阵中主要反映冲击信息明显的奇异值进行信号重构的方法来滤除信号中的平滑信号和部分噪声,获取带噪声的冲击信号;然后利用形态滤波能有效滤除脉冲干扰噪声的特点,反其道而行之,从而提取信号的冲击故障特征的方法,并将该方法应用于轴承的振动信号的故障特征提取。仿真与实例表明,该方法能有效提取强背景信号及噪声中的弱冲击特征信号,是一种有效的弱信号特征提取方法。 相似文献
6.
《国际计算机数学杂志》2012,89(3):545-554
The traditional way to define the instantaneous frequency of a real-valued signal is based on the analytic signal obtained by means of the Hilbert transform. Vakman showed the justification of this method by proving that under some fundamental conditions the imaginary part signal operator ? must be the Hilbert transform. This paper shows that his arguments are not valid in the finite-energy signal space L 2(?) – an important space of signals. In this paper, we propose substitutive conditions and establish the L 2(?) version of Vakman's analysis, which is a meaningful supplement to Vakman's theory. 相似文献
7.
基于小波包分析的滚动轴承故障特征提取 总被引:1,自引:0,他引:1
简述了小波包分析的基本原理及其用于特征提取的机理,利用小波包对滚动轴承振动加速度信号进行分解,求出各频率段的能量,并以此作为滚动轴承所发生故障的特征向量进行提取,从而识别出滚动轴承的故障,通过对于实测信号的分析证明了该方法的有效性,体现了小波包分析的优良性。 相似文献
8.
针对强背景噪声下齿轮微弱故障特征难以有效提取的问题,本文提出了一种基于自适应经验小波塔式分解的齿轮故障诊断方法 .首先,在齿轮故障信号傅立叶变换基础上,通过设定分解层数对信号频谱进行有效划分,进行经验小波变换;然后进一步提出时-频峭度指标,绘制信号在不同分解层数下各分量信号的时-频峭度图,确定所感兴趣的最优共振频段范围;最终得到最优单分量信号,利用包络解调分析提取齿轮微弱故障特征.采用所提方法对齿轮故障信号进行分析,结果表明该方法可以有效提取齿轮微弱故障特征,而传统经验小波方法因为受强背景噪声影响较大,无法准确提取齿轮微弱故障特征信息. 相似文献
9.
湖底回波的包络特征提取 总被引:4,自引:0,他引:4
湖底回波包络包含了湖底沉积物的结构和物理性质的信息,可以作为沉积物分类的特征.用传统的Hilbert变换提取宽带回波包络存在一些固有的缺点.该文中,采用线性相位的双正交小波,对湖底回波解析信号的实部和虚部分别进行离散正交小波变换,提取合适尺度上的小波系数的模值作为包络特征矢量.它可以采用Mallat快速算法,运算量少,提取的包络特征矢量维数少,能简化目标识别的算法.对实测的湖底回波数据进行特征提取和分类的仿真实验也表明,采用这种方法得到的包络特征是一种稳健、有效的特征,能获得较高的正确识别率. 相似文献
10.
11.
基于小波变换的脉象信号特征提取方法 总被引:11,自引:0,他引:11
为了较好地区分正常人与心脏病人的脉象信号,利用小波变换奇异性检测功能与多尺度分辨特性,提出了两种提取脉象信号特征的方法:连续小波变换法和二进小波变换法。在此基础上,构造了两种特征向量:小波变换系数的尺度——主波峰值和小波变换的尺度——能量值。经过对临床采集的235例脉象信号的处理与分析统计,所得数据具有较好的重复性与稳定性,可以作为用于脉象信号识别的特征向量。 相似文献
12.
滚动轴承作为风机的关键部件,其状态监测和剩余寿命预测对机械的稳定运行具有重要作用。剩余寿命预测(Remaining Useful Life,RUL)不仅可以有效地防止机械装备发生突发性故障,而且可以最大限度地利用关键零部件的工作能力。基于长短期记忆网络(Long Short-Term Memory LSTM)对滚动轴承的剩余寿命进行预测,首先对滚动轴承数据进行时域、频域、时频域的故障特征提取,将提取特征作为预测模型输入;将一部分样本作为训练集输入LSTM预测模型,分批次输入模型进行训练,并调整网络参数,建成模型后利用测试集进行测试。相比于支持向量机(Support Vector Machine,SVM),基于LSTM网络的寿命预测模型能够充分利用全生命周期时序数据的前后关联信息,对滚动轴承寿命预测具有更高的准确率。 相似文献
13.
针对故障诊断过程中基于简单的多类故障特征联合决策存在特征集维数多、数据冗余、故障识别率不高的缺点,提出了一种基于异类特征优选融合的故障诊断方法。该方法根据多类特征数据的轮廓图,分析各维特征数据的聚类特性,去除聚类性弱、对故障区分无益的冗余特征维度,仅保留聚类性强的特征维度用于故障识别。在轴承故障诊断实验中,选用故障信号时域统计量和小波包能量两类多维特征进行优选融合,并采用反向传播(BP)神经网络进行故障模式识别。故障识别率达到100%,显著高于无特征优选的故障诊断方法。实验结果表明所提出的方法简便易行,可以显著提高故障识别率。 相似文献
14.
针对传统滚动轴承故障诊断方法中单信道振动数据分析导致的故障特征提取不充分、诊断精度受限的问题, 提出一种基于改进人工蜂群算法的多元变分模态分解(IABC-MVMD)与精细复合多元多尺度模糊熵(RCMMFE)相结合的多元故障信号诊断方法. 为克服MVMD分解过程中分解层数与带宽平衡参数难以自整定对诊断精度带来的影响, 设计一种融合Chebyshev混沌映射、精英信息引导、自适应惯性权重的改进人工蜂群算法(IABC), 满足了多元激励信号在频域内的自适应剖分需求. 在此基础上, 使用RCMMFE构建能够全面表征轴承状态的高维故障特征集, 并将其输入支持向量机中进行故障诊断. 通过CWRU数据集上的仿真验证并与现有方法的对比分析, 结果表明, 所提出方法能够高效准确地提取与识别滚动轴承的多元故障信号特征, 具有较好的理论价值与实践意义. 相似文献
15.
为提高飞行器测试数据的利用率,解决飞行器故障诊断中资源浪费的问题。提出并实现了一种基于数据图像特征提取的飞行器故障自动诊断系统。系统通过建立一个历史测试数据库,对各种测试项目的历史图像提取特征值,将其存储在数据库中,且将该次测试对应的诊断信息存储在内。利用小波变换法作为特征提取的方法,小波能谱熵作为特征值表征。将当前测试故障的数据图像进行特征提取,并与数据库中图像进行比对,找出相似度最高的历史数据图像。从而帮助测试人员进行故障定位诊断工作。 相似文献
16.
为了更好地提取结构损伤特征信息,提出了基于经验小波变换(EWT)和希尔伯特变换的振动信号分析方法。首先,用EWT对结构损伤加速度振动信号的频谱进行自适应分割,然后提取不同的调幅-调频(A M-AF)分量,最后对其进行希尔伯特变换,获取瞬时频率。仿真和工程实验结果表明:经验小波变换相对于经验模态分解(E MD)可以更好地提取信号的各个特征分量,为信号时频处理奠定基础,且分解的模态少,不存在虚假模态。同时,EWT与Hilbert的结合更进一步验证了该方法的有效性。 相似文献
17.
针对仿真数据驱动的迁移故障诊断方法中虚实数据域差异过大带来的负迁移问题,提出一种基于虚实域多层级联合适应网络(VDMJAN)的故障仿真到现实诊断方法.采用非规则损伤形态的轴承故障动力学仿真模型,生成测试实体轴承的故障虚拟信号;构建不同尺寸卷积核的深度卷积神经网络,对虚实域信号进行粗细粒度特征提取;采用多分类器并行输出概率融合法对实测样本进行伪标签标注,对仿真与实测样本进行不同层级的领域特征精细对齐;引入VDMJAN训练的有效性损失,保证了多分类器对实测样本状态识别的一致性,并采用已对齐实测数据对分类器进行校正微调.两个实验分析结果表明,所提出的VDMJAN在实测故障样本标签信息完全缺失的情况下,能够有效实现从仿真到现实的故障诊断,在特殊环境下样本稀缺的设备故障诊断领域具有较好的应用前景. 相似文献
18.
电机的故障特征信号一般为非平稳信号,而基于线性、平稳假定的传统故障特征提取方法不能准确提取非平稳信号的时频变化特征,针对这一问题,本文采用了更适于分析非线性非平稳信号的希尔伯特-黄变换(HHT),提出了结合集合经验模态分解(EEMD)与灰色关联度的方法进行电机故障特征提取,验证了EEMD抑制模态混叠问题的可行性以及灰色关联度方法识别虚假分量的有效性。并进一步对实际电机故障信号实验分析,利用BP人工神经网络对提取的特征向量进行故障识别,证明了该方法可以有效提高电机故障特征提取的准确性。 相似文献
19.
While solving a heat conduction problem in 1807, a French scientist Jean Baptiste Jo-seph Fourier, suggested the usage of the Fourier theorem. Thereafter, the Fourier trans-form (FT) has been applied widely in many scientific disciplines, and has played i… 相似文献
20.
针对滚动轴承早期故障信号被背景噪声淹没、故障特征不明显的问题,提出一种基于小波包分解和互补集合经验模态分解(CEEMD)的轴承早期故障信号特征提取方法.利用Matlab软件对采集到的轴承振动信号进行快速谱峭度分析,根据峭度最大化原则确定带通滤波器的中心频率和带宽,设计带通滤波器;对经过带通滤波器滤波后的信号进行小波包分解和CEEMD分解,根据峭度、相关系数筛选出有效本征模态函数(IMF)分量;利用IMF分量重构小波包信号,对重构小波包信号进行包络谱分析,提取轴承早期故障信号特征频率.该方法通过谱峭度分析降低背景噪声干扰,通过小波包分解增强故障冲击信号,并将CEEMD与小波包分解相结合,解决经典EMD分解存在的模态混叠、无效分量问题.仿真结果表明,相较于传统包络解调算法,重构后信号的背景噪声得到抑制,故障特征分量突出,验证了所提方法的可行性和有效性. 相似文献