首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hydrodynamics of liquid slugs in gas–liquid Taylor flow in straight and meandering microchannels have been studied using micro Particle Image Velocimetry. The results confirm a recirculation motion in the liquid slug, which is symmetrical about the center line of the channel for the straight geometry and more complex and three-dimensional in the meandering channel. An attempt has also been made to quantify and characterize this recirculation motion in these short liquid slugs (Ls/w<1.5) by evaluating the recirculation rate, velocity and time. The recirculation velocity was found to increase linearly with the two-phase superficial velocity UTP. The product of the liquid slug residence time and the recirculation rate is independent of UTP under the studied flow conditions. These results suggest that the amount of heat or mass transferred between a given liquid slug and its surroundings is independent of the total flow rate and determined principally by the characteristics of the liquid slug.  相似文献   

2.
For better understanding and optimization of multiphase flow in miniaturized devices, micro-computed tomography (μCT) is a promising visualization tool, as it is nondestructive, three-dimensional, and offers a high spatial resolution. Today, computed tomography (CT) is a standard imaging technique. However, using CT in microfluidics is still challenging, since X-ray related artifacts, low phase contrast, and limited spatial resolution complicate the exact localization of interfaces. We apply μCT for the characterization of stationary interfaces in thin capillaries. The entire workflow for imaging stationary interfaces in capillaries, from image acquisition to the analysis of interfaces, is presented. Special emphasis is given to an in-house developed segmentation routine. For demonstration purposes, contact angles of water, liquid polydimethylsiloxane, and air in FEP, glass, and PMMA are determined and the influence of gravity on interface formation is discussed. This work comprises the first steps for a systematic 3D investigation of multiphase flows in capillaries using μCT.  相似文献   

3.
《Chemical engineering science》2001,56(21-22):5871-5891
Some aspects of the fundamental characteristics of evaporative liquid jets in gas–liquid–solid flows are studied and some pertinent literature is reviewed. Specifically, two conditions for the solids concentration in the flow are considered, including the dilute phase condition as in pneumatic convey and the dense phase condition as in bubbling or turbulent fluidized beds. Comparisons of the fundamental behavior are made of the gas–solid flow with dispersed non-evaporative as well as with evaporative liquids.For dilute phase conditions, experiments and analyses are conducted to examine the individual phase motion and boundaries of the evaporative region and the jet. Effects of the solids loading and heat capacity, system temperature, gas flow velocity and liquid injection angle on the jet behavior in gas and gas–solid flows are discussed. For dense phase conditions, experiments are conducted to examine the minimum fluidization velocity and solids distribution across the bed under various gases and liquid flow velocities. The electric capacitance tomography is developed for the first time for three-phase real time imaging of the dense gas–solid flow with evaporative liquid jets. The images reflect significantly varied bubbling phenomenon compared to those in gas–solid fluidized beds without evaporative liquid jets.  相似文献   

4.
Mixing is crucial in the dispersion of two immiscible fluids. The rational design of an impeller is necessary to form suitable flow conditions and improve fluid mixing efficiency. A double rigid-flexible combination impeller was designed by connecting the upper and lower rigid impeller blades with flexible pieces. Experimental measurements were performed in a laboratory-scale mixer-settler under different impeller types. The largest Lyapunov exponent (LLE) and multi-scale entropy (MSE) were investigated using Matlab. Results showed that the double rigid-flexible combination impeller enhanced liquid–liquid mixing in the mixer-settler through the multiple-body motion behavior triggered by the swings of flexible pieces. At the optimum mixing point of each impeller, the LLEs of the double impeller, double rigid combination impeller, and double rigid-flexible combination impeller were 0.018, 0.055, and 0.057, respectively. At 75 rpm, the MSE of the combination impellers was obviously greater than that of the double impeller, and the rigid-flexible combination impeller had larger MSE than the double rigid combination impeller. The mixing efficiency of the rigid-flexible combination impeller increased with increasing width and quantity of the flexible piece. The quantity of rigid blade slice also influenced the enhancement of mixing ability. The double rigid-flexible combination impeller intensified the chaotic mixing of the two-phase fluid by changing the flow field structure and energy dissipation mode, ultimately achieving an efficient-mixing operation.  相似文献   

5.
Thermal storage systems, used, e.g., for domestic heating, must be able to compensate the mismatch between supply and demand. The most efficient techniques for thermal storage are based on sorption storage processes. Usually in sorption, the adsorption process occurs in combination with a solid state adsorbent, whereas absorption takes place in a liquid/gas system. During such sorption processes the flow behavior of the carrier medium is crucial for the efficiency of a falling film absorber. In this work the hydrodynamics of the falling liquid film in two geometrical setups, namely on an inclined plane and over two horizontal parallel tubes, is studied. For the simulation the Eulerian–Eulerian model of the software ANSYS CFX and the interFoam application of the open source software OpenFOAM were used. The numerical results of the two geometries were compared with each other and also with existing data from literature to predict the performance of a sorption storage regarding the specific wetted area and the needed height for gravity driven film absorption.  相似文献   

6.
The gas–liquid vortex reactor (GLVR) has substantial process intensification potential for multiphase processes. Essential in this respect is the micromixing efficiency, which is of great importance in fast reaction systems such as crystallization, polymerization, and synthesis of nanomaterials. By creating a vortex flow and taking advantage of the centrifugal force field, the liquid micromixing process can be intensified in the GLVR. Results show that introducing a liquid into a gas-only vortex unit results in suppression of primary and secondary gas flow. The Villermaux–Dushman protocol is applied to study the effects of the gas flow rate, liquid flow rate, and liquid viscosity based on a segregation index. Based on the incorporation model and reaction kinetics, the micromixing time of the GLVR is determined to be in the range of 10−4 ~ 10−3 s, which is comparable to the highly efficient rotating packed bed and substantially better than a static mixer.  相似文献   

7.
An electrical resistance tomography (ERT) linear probe was used to measure gas hold-up in a two-phase (gas–liquid) and three phase (gas–solid–liquid) stirred-tank system equipped with a Rushton turbine. The ERT linear probe was chosen rather than the more commonly used ring cage geometry to achieve higher resolution in the axial direction as well as its potential for use on manufacturing plant. Gas-phase distribution was measured as a function of flow regime by varying both impeller speed and gas flow rate. Global and local gas hold-up values were calculated using ERT data by applying Maxwell's equation for conduction through heterogeneous media. The results were compared with correlations, hard-field tomography data, and computational fluid dynamic simulations available in the literature, showing good agreement. This study thus demonstrates the capability of ERT using a linear probe to offer, besides qualitative tomographic images, reliable quantitative data regarding phase distribution in gas–liquid systems.  相似文献   

8.
For the design and optimization of a tubular gas–liquid atomization mixer,the atomization and mixing characteristics of liquid jet breakup in the limited tube space is a key problem.In this study,the primary breakup process of liquid jet column was analyzed by high-speed camera,then the droplet size and velocity distribution of atomized droplets were measured by Phase-Doppler anemometry (PDA).The hydrodynamic characteristics of gas flow in tubular gas–liquid atomization mixer were analyzed by computational fluid dynamics (CFD) numerical simulation.The results indicate that the liquid flow rate has little effect on the atomization droplet size and atomization pressure drop,and the gas flow rate is the main influence parameter.Under all experimental gas flow conditions,the liquid jet column undergoes a primary breakup process,forming larger liquid blocks and droplets.When the gas flow rate (Q_g) is less than 127 m~3·h~(-1),the secondary breakup of large liquid blocks and droplets does not occur in venturi throat region.The Sauter mean diameter (SMD) of droplets measured at the outlet is more than 140μm,and the distribution is uneven.When Q_g127 m~3·h~(-1),the large liquid blocks and droplets have secondary breakup process at the throat region.The SMD of droplets measured at the outlet is less than 140μm,and the distribution is uniform.When 127Q_g162 m~3·h~(-1),the secondary breakup mode of droplets is bag breakup or pouch breakup.When 181Q_g216 m~3·h~(-1),the secondary breakup mode of droplets is shear breakup or catastrophic breakup.In order to ensure efficient atomization and mixing,the throat gas velocity of the tubular atomization mixer should be designed to be about 51 m·s~(-1)under the lowest operating flow rate.The pressure drop of the tubular atomization mixer increases linearly with the square of gas velocity,and the resistance coefficient is about 2.55 in single-phase flow condition and 2.73 in gas–liquid atomization condition.  相似文献   

9.
In contrast to the concurrent mixer-settler, the interaction between the mixing and settling chambers have to be taken into account in the simulation of the countercurrent mixer-settler, and no work has been reported for this equipment. In this work, a three-phase flow model based on the Eulerian multiphase model, coupled with a sliding mesh model is proposed for a countercurrent mixer-settler. Based on this, the dispersed phase distribution, flow pattern, and pressure distribution are investigated, which can help to fill the gap in the operation mechanism. In addition, the velocity vector distribution at the phase port shows an intriguing phenomenon that two types of vectors with opposite directions are distributed on the left and right sides of the same plane, which indicates that the material exchange in the mixing and settling chambers is simultaneous. Analysis of this variation at this location by a fast Fourier transform (FFT) method reveals that it is mainly influenced by the mixing chamber and is consistent with the main period of the outlet flow fluctuations. Therefore, by monitoring the fluctuation of the outlet flow and then analyzing it by the FFT method, the state of the whole tank can be determined, which makes it promising for the design of control systems for countercurrent mixer-settlers.  相似文献   

10.
The effects of operating parameters (capillary and Reynolds numbers) and microchannel aspect ratio (α=w/h=[1;2.5;4]α=w/h=[1;2.5;4]) on the recirculation characteristics of the liquid slug in gas–liquid Taylor flow in microchannels have been investigated using 3-dimensional VOF simulations. The results show a decrease in the recirculation volume in the slug and an increase in recirculation time with increasing capillary number, which is in good agreement with previous results obtained in circular and square geometries (Thulasidas et al., 1997). In addition, increasing the aspect ratio of the channel leads to a slight decrease in recirculating volumes but also a significant increase in recirculation times.  相似文献   

11.
This article presents the gas and liquid entrainment and its dispersion in a gas–liquid–liquid mixing column. The variations in phase entrainment is observed with the change in the paraffin liquid and kerosene volume fraction from 5% to 35% due to the increase in the flow resistance with increase in the effective viscosity of the liquid–liquid mixture. The degree of dispersion is enunciated based on the axial dispersion model and the flow resistance of the phases in the column. A correlation is proposed to interpret the entrainment of phase as a function of operating variables within the range of experimental conditions.  相似文献   

12.
Hydrodynamics characteristics of a fast and highly exothermic liquid–liquid oxidation process with in situ gas production in microreactors were studied using a newly developed experimental method. In the adipic acid synthesis through the K/A oil (the mixture of cyclohexanol and cyclohexanone) oxidation with nitric acid, bubble generation modes were divided into four categories. The gas production became more intensive, unstable, even explosive with increasing the oil phase feed rate and the temperature. A novel automatic image processing method was developed to monitor the instantaneous velocity online by tracking the gas–liquid interface. The axial velocity at the same location was unstable due to the changing gas production rate. Furthermore, the actual residence time was obtained easily with being only 36% of the space–time minimally, beneficial for establishing accurate kinetics and mass transfer models with time participation. Finally, an empirical correlation was developed to predict the actual residence time under different conditions.  相似文献   

13.
《Chemical engineering science》2001,56(21-22):6455-6462
The real-time cross-sectional distributions of the gas holdups in gas–liquid and gas–liquid–solid systems are measured using electrical capacitance tomography. For the gas–liquid system, air as the gas phase and both Norpar 15 (paraffin) and Paratherm as the liquid phases are used. Polystyrene beads whose permittivity is similar to that of Paratherm are used as the solid phase in the gas–liquid–solid system. The three-phase system is essentially a dielectrically two-phase system enabling measurement of the gas holdup in the gas–liquid–solid system independent of the other two phases. A new reconstruction algorithm based on a modified Hopfield dynamic neural network optimization technique developed by the authors is used to reconstruct the tomographic data to obtain the cross-sectional distribution of the gas holdup. The real-time flow structure and bubbles flow behavior in the two- and three-phase systems are discussed along with the effects of the gas velocity and the solid particles.  相似文献   

14.
This study aims to investigate the effect of ultrasonic waveforms on the gas–liquid mass transfer process. For a given load power (P), continuous rectangular wave yielded stronger bubble oscillation and higher mass transfer coefficient (kLa) than continuous triangular and sinusoidal wave. For pulsed ultrasound, the kLa decreased monotonically with decreasing duty ratio (D), resulting in weak enhancement at low D (≤33%). For a given average load power (PA), concentrating the P for a shorter period resulted in a higher kLa due to stronger cavitation behavior. For a given PA and D, decreasing the pulse period (T) led to an increase in kLa, which reached a constant high level when the T fell below a critical value. By optimizing the D and T, a kLa equivalent to 92% of that under continuous ultrasound was obtained under pulsed ultrasound at a D of 67%, saving 33% in power consumption.  相似文献   

15.
16.
Separations are indispensable to most chemical processes, regardless of operational scale. In the field of chemical microprocess engineering, separations have so far attracted rather limited attention compared to reactive processes, although increasingly more research is directed towards this area. Microstructured devices offer the opportunity of intensifying transport processes associated with separation operations by providing high ratios of contact areas to volume, short transport distances and high driving force gradients. These attributes have so far been exploited for various microseparations. In this review, we focus on separations where gas and liquid phases are present, and in particular on absorption, stripping and distillation. Two main approaches for contacting the two phases have been employed: continuous and dispersed phase contactors. Removal of components from gas mixtures by absorption and stripping of volatiles from liquid mixtures have been achieved in falling film devices, thin porous plate microcontactors, as well as in dispersed flow systems. Distillation has been performed in microchannel devices, utilizing capillary, centrifugal and gravity forces, vacuum or carrier gas.  相似文献   

17.
The coupled CFD-E-model for multiphase micro-mixing was developed, and used to predict the micro-mixing effects on the parallel competing chemical reactions in semi-batch gas–liquid and solid–liquid stirred tanks. Based on the multiphase macro-flow field, the key parameters of the micro-mixing E-model were obtained with solving the Reynolds-averaged transport equations of mixture fraction and its variance at low computational costs. Compared with experimental data, the multiphase numerical method shows the satisfactory predicting ability. For the gas–liquid system, the segregated reaction zone is mainly near the feed point, and shrinks to the exit of feed-pipe when the feed position is closer to the impeller. Besides, surface feed requires more time to completely exhaust the added H+ solution than that of impeller region feed at the same operating condition. For the solid–liquid system, when the solid suspension cloud is formed at high solid holdups, the flow velocity in the clear liquid layer above the cloud is notably reduced and the reactions proceed slowly in this almost stagnant zone. Therefore, the segregation index in this case is larger than that in the dilute solid–liquid system.  相似文献   

18.
In the first three parts of this series a three-dimensional (3D) model was developed for transport and reaction of gaseous mixtures in a landfill. An optimization technique was also utilized in order to determine a landfill's spatial distributions of the permeability, porosity, the tortuosity factors, and the total gas generation potential, given a limited amount of experimental data. In the present paper we develop the model further by including the flow of both the leachate and the gases. A 3D dynamic model is developed that accounts for the generation of the four main gases of a landfill, along with the dissolved organic acids and the carbon in the presence of the leachate. The model is then utilized, through extensive numerical simulations, to study the effect of the various factors on the concentrations of the gases and the micro-organism. In particular, we demonstrate the strong effect of the heterogeneities of a landfill, represented by the spatial distribution of the local porosities, as well as an anisotropic distribution of the local permeabilities, on the behavior of a landfill, and in particular pressure buildup in it.  相似文献   

19.
Experimental results of measurements of the bubble and slug lengths in Taylor (slug) flow are presented. The experiments were carried out using 3 different straight microchannels (microreactor with square cross-section made of polydimethyloxosilane (PDMS); microreactor with circular cross-section made of glass; microreactor with rectangular cross-section made of polyethylene terephthalate modified by glycol (PETg)) and 4 different liquids (water, ethanol propanol and heptane). The results have been compared with the available literature correlations. It is concluded, that the values obtained from the correlation proposed by Laborie et al. [Laborie, S., Cabassud, C., Durant-Bourlier, L., Laine, J.M., 1999. Characterization of gas–liquid two-phase flow inside capillaries. Chem Eng Sci 54, 5723–5735] do not agree with the results of measurements, while the agreement of these results with the predictions obtained using the correlation proposed by Qian and Lawal [Qian, D., Lawal, A., 2006. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem Eng Sci 61, 7609–7625] is good. New, corrected values of the pre-exponential constant and the exponents in the Qian and Lawal [Qian, D., Lawal, A., 2006. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem Eng Sci 61, 7609–7625] correlation are proposed.  相似文献   

20.
The effects of inorganic electrolytes (NaCl, MgCl2, CaCl2) in aqueous solutions on oxygen transfer in a bubble column were studied. Electrolyte concentrations (c) below and above the critical concentrations for bubble coalescence (ctc), and six superficial gas velocities (vsg), were evaluated. The volumetric mass transfer (kLa) and the mass transfer (kL) coefficients were experimentally determined. It was found that the concentration of electrolytes reduced the kL, but the interfacial area (a) increased enough to result in a net increase of kLa. Using as independent variable a normalizing variable (cr = c/ctc), and maintaining fixed vsg, similar values of kLa were observed regardless the kind of electrolyte; the same happened for kL. This suggests that cr quantifies the structural effects that these solutes exert on mass transfer. Also, once cr = 1 was reached, no significant variations were found in kLa and kL for constant vsg. It is concluded that the gradual inhibition of bubble coalescence (cr < 1) governs the significant changes in hydrodynamics and mass transfer via the reduction of bubble size and the consequent increment of a and gas holdup (?g). Finally, regarding the effects of vsg on mass transfer, transition behaviors between those expected for isolated bubbles and bubble swarms were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号