共查询到20条相似文献,搜索用时 46 毫秒
1.
针对学生在新浪微博文本中所表现出来的抑郁情感倾向,提出了一种识别抑郁情感倾向的模型. 通过在本校广泛发动学生在线填写抑郁自评量表,获得学生的量表得分. 采集学生的微博文本,并请本校心理学老师对微博进行人工标注. 在预处理阶段,利用抑郁情感词典重新组合在分词阶段被拆分的抑郁情感词,以提高识别正确率. 然后基于支持向量机构建一个情感分类器对微博数据进行训练,经过不断的学习反馈,获得较好的分类效果;最后,定义了抑郁指数来衡量个体在一段时间内的抑郁倾向程度. 实验结果表明,抑郁指数衡量的抑郁程度大致与量表结果吻合,该方法识别准确率达到82.35%. 相似文献
2.
情感倾向分析主要用于判断文本的情感极性,在商品评论、舆情监控等领域有着重要的商业和社会价值。传统的机器学习方法主要是浅层的学习算法,并不能很好地抽取文本中高层情感信息。针对该问题,提出了一种以组合了语义信息和情感信息的情感词向量作为输入的改进双向长短期记忆模型,通过构建语义和情感双输入矩阵,并在隐藏层加入情感特征抽取模块,来增强模型的情感特征表达能力。在数据集上的实验结果表明,与标准的BLSTM模型和传统机器学习模型相比,该模型能够有效提升文本情感倾向分析的效果。 相似文献
3.
支持向量机(SVM)是一类新型机器学习方法,首先简要介绍了SVM的基本原理,进而分析了该方法应用于异常检测,最后对基于支持向量机(SVM)的异常检测在路由器中的实现方法进行了简要论述和仿真实验。 相似文献
4.
中文分词的难点在于处理歧义和识别未登录词,因此对新词的正确识别具有重要作用.文中结合提出的新词词间模式特征以及各种词内部模式特征,对从训练语料中抽取正负样本进行向量化,通过支持向量机的训练得到新词分类支持向量.对测试语料结合绝对折扣法进行新词候选的提取与筛选,并与训练语料中提取的词间模式特征以及各种词内部模式特征进行向量化,得到新词候选向量,最后将训练语料中得到的新词分类支持向量以及对测试语料中得到的新词候选向量结合进行SVM测试,得到最终的新词识别结果 相似文献
5.
基于模糊支持向量机的网络入侵检测研究 总被引:3,自引:0,他引:3
模糊支持向量机理论属于统计学习理论,是支持向量机理论的推广,使支持向量机更好地运用到实际工作中。我们将其运用到网络入侵检测中,实验证明是可行的、高效的,有其特点和优势的。 相似文献
6.
网络时间隐蔽信道的检测是网络隐蔽信道研究中的热点和难点。当前的网络时间隐蔽信道的检测方法更多是针对某个或者某些特定的网络时间隐蔽信道,不具备通用性。本文利用机器学习中的SVM思想,提出一种基于One-class SVM的通用检测方法。把时间隐蔽信道的检测看作是一种单值分类问题,利用正常信道数据集进行训练,构建分类模型。实验表明该检测方法在保证较高检测率的同时,又具备较好的通用性,可以比较有效地检测出多种网络时间隐蔽信道。 相似文献
7.
入侵检测系统已经成为网络安全技术的重要组成部分。然而,传统的异常入侵检测技术需要通过对大量训练样本的学习才能达到较高的检测精度,而大量训练样本集的获取在现实网络环境中是比较困难的。本文研究在网络入侵检测中采用基于支持向量机(SVM)的主动学习算法,解决训练样本获取代价过大带来的问题。通过基于SVM的主动学习算
算法与传统的被动学习算法的对比实验说明,主动学习算法能有效地减少学习样本数及训练时间,能有效地提高入侵检测系统的分类性能。 相似文献
算法与传统的被动学习算法的对比实验说明,主动学习算法能有效地减少学习样本数及训练时间,能有效地提高入侵检测系统的分类性能。 相似文献
8.
针对支持向量机分类方法在小样本、非线性情况下具有较好的泛化性能的特点,结合入侵检测系统实时性和适应性的要求,提出了一种应用动态支持向量机的入侵检测系统,来提高SVM模型的分类精度,并详细介绍了系统训练集以及分类模型动态更新的方法。最后对系统进行了仿真验证。实验仿真表明,该系统可有效的提高入侵检测的准确率,改善由于数据集更新造成的SVM分类精度下降的情况。 相似文献
9.
10.
11.
网络异常检测技术是入侵检测系统中不可或缺的部分。然而目前的入侵检测系统普遍存在检测率不高,误报率过高等问题,从而难以在实际的企业中大规模采用。针对之前的检测技术检测效果不佳的问题,提出基于SVM回归和改进D-S证据理论的入侵检测方法。该方法是将支持向量机回归的分类融合应用到网络异常行为分析中,在SVM参数选择时采用交叉验证和深度优先搜索算法进行优化选择,并通过融合证据理论,建立网络异常检测模型。通过仿真实验表明,该模型能够有效地提高入侵检测性能,缩短检测时间。 相似文献
12.
由于传统嵌入式网络系统入侵检测方法难以获得较高的检测精度,提出基于遗传算法优化的支持向量机(GA-SVM)的网络入侵检测技术.支持向量机分类器能够较好地解决少样本、高维、非线性分类问题.然而,支持向量机训练参数的选择对其分类精度有着很大影响,遗传算法能够同时优化支持向量机的训练参数,采用遗传算法进行支持向量机的训练参数同步优化.实验结果表明,这种遗传算法优化的支持向量机分类入侵检测模型有着很高的检测精度. 相似文献
13.
提出了一种新的基于支持向量机的彩色图像边缘检测算法.将彩色图像像素3×3邻域内像素的RGB值表示为一个27维的向量,作为该像素的特征,利用支持向量机直接判断其是否为边缘点.针对实际图像的边缘检测实验表明,支持向量机可以有效地进行彩色图像的边缘检测,其检测效果可以和传统的Sobel等边缘检测算子相当. 相似文献
14.
李佳 《计算机应用与软件》2015,(2):311-314
为了提高网络入侵检测的正确率,提出一种混合入侵杂草HIWO(hybrid invasive weed optimization)算法优化SVM的网络入侵检测模型(HIWO-SVM)。该模型将SVM参数编码为入侵杂草,并以网络入侵检测率作为杂草种子适应度函数,然后通过模拟杂草入侵种子的空间扩散、生长、繁殖和竞争等过程找到SVM的最优参数。在寻优过程中引入遗传算法交叉操作以增强HIWO算法跳出局部极值的能力,最后根据最优参数建立网络入侵检测模型。在Matlab 2012平台采用KDD CUP 99数据集仿真测试,结果表明HIWO-SVM可以获得满意的网络入侵检测效果。 相似文献
15.
针对自动驾驶实际道路场景复杂导致行人误检率高的问题,提出一种基于卷积神经网络及改进支持向量机的行人检测方法。利用聚合通道特征快速获取图像候选区域,将归一化后的候选区域图像输入卷积神经网络对其进行深度特征提取;利用主成分分析法将卷积神经网络末端所得到的特征向量进行降维处理,减少其冗余特征信息以获得精确的行人特征描述;将行人特征送至优化后的支持向量机完成分类。考虑支持向量机在分类过程中存在核函数参数选择困难的问题,利用改进后的蚁群算法对其进行优化选择,获得最优支持向量机参数以提高分类精度。实验结果表明,不同场景下的行人平均检测精确度达到92%,误检率大幅下降且具有较好的实时性。 相似文献
16.
根据支持向量机理论和肤色信息分布特点,提出利用像素点的8邻域信息,用C-支持向量机的方法进行图像的肤色检测.在YCbCr颜色空间,去除照度分量,用像素点及其8邻域内各点的Cb、Cr分量构成的向量作为输入,像素点所属类别为输出,高斯函数为核函数,采用序列最小最优化学习算法,构造了C-支持向量机肤色检测器.实验表明,当核宽度为80,惩罚系数C为200时,该肤色检测器的检测正确率可达到0.977. 相似文献
17.
提出了一种基于遗传算法优化支持向量机的故障诊断模型.它利用遗传算法对支持向量机同时对传统的时域特征参量子集和核参数同时优化,以达到选择最优的设备故障主导特征参数组合的目的,实现对机器不同类型故障的识别.对齿轮故障诊断的结果表明它有效提高了多分类支持向量机的故障分类准确性. 相似文献
18.
吕成戍 《计算机应用与软件》2015,32(5)
为了提高支持向量机的托攻击检测效果,提出一种不同于单一算法的基于特征选择和支持向量机的托攻击检测方法。首先定义特征的样本差异性度量,并由此推导出特征的类别可分性度量作为特征选择准则,然后用支持向量机评估所选特征子集的有效性,在不损失样本信息的前提下,通过递归反向特征剔除算法实现检测特征的自动优选,最后利用支持向量机来检测攻击用户概貌。在标杆数据集上与文献中的经典方法进行实验比较和分析,结果显示该方法可以有效地提取最具检测能力的特征子集,同时能获得更好的检测效果,证明了方法的有效性。 相似文献
19.
对从噪音信息中辨别有用的信息这一问题提出了一种解决方法.将大型的样本空间分解到可变的变量集和固定的变量集,并且让可变的变量集成为"工作集",使大型样本空间转变为小型的空间,然后引用primal-dual interior-point-solver来解决问题. 相似文献
20.
对支持向量机理论进行了简要分析,并将支持向量机引入汉语语音关键词识别系统中,根据关键词置信度将关键词假想命中分为接受和拒识两类,从而提高系统正确识别率。针对线性支持向量机、不同核函数下的非线性支持向量机以及核函数为径向基函数时支持向量机的性能做了一些相关实验。实验结果显示,支持向量机是一种相当有效的关键词确认方法。 相似文献