首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A three dimensional Euler–Lagrange model for the gas-particle two-phase impinging streams (GPIS) is developed based on the direct simulation Monte Carlo (DSMC) method with consideration of particle rotation and collision. The gas-particle flow characteristics involved in GPIS as well as the effects of inlet gas velocity and particle rotation are analyzed. The results indicate that two pairs of counter-rotating gas vortices are developed at two sides of the opposite jet flows, which is able to entrain the particles and thus greatly weaken the deposition of particles. Interparticle collisions in the impingement zone produce two effects on the particle behaviors: the direct escaping of particles from impingement zone and the progressive accumulation of particles in impingement zone. Under the same inlet particle mass flow rate, the particle concentration in the impingement zone decreases with increasing inlet velocity of gas due to the increasing impinging reaction of interparticle collisions and growing entrainment of gas vortices. In addition, the rotation of particle provides an additional driving force to push the particles away from the impingement zone, leading to the higher speed of escaping particles and smaller maximum particle concentration at the center of impingement zone than those without particle rotation.  相似文献   

2.
This study focuses on the key parameters that enhance the stability of ribbon burners used in various industrial processes, characterizing the flame environment and flow regimes that the burner creates under changing operating conditions. The research includes the exploration of ribbon-pack configurations in order to define the effects of separation distance and port arrangement on flame stability and thermal and fluid flow. Flow visualization studies reveal that burners having a 1.5–2.0 mm division between rows appear to be the most stable. More than four rows of ports in the ribbon-pack are required to resist entrainment of ambient air as a result of impinging surface motion. The flame environment created by the ribbon burner experiences higher levels of mixing, at a lower Reynolds number in comparison to a single non-reacting jet due to combustion-induced turbulence and jet interaction. Under these high flow velocity conditions there is little entrainment of ambient air along the impingement surface and a very stable flame environment is created.  相似文献   

3.
为了降低CO2排放,缓解天然气供应压力,促进氢能规模消纳,掺氢天然气被认为是最有前途的途径之一。目前,掺氢天然气的研究主要集中在工业上,本工作基于以掺氢天然气为燃料的家用大气式燃烧器的燃烧特性,利用Fluent软件结合GRI 2.11化学反应机理文件,建立燃烧器二维轴对称模型,对比数值模拟结果与实验结果,验证了数值模型的合理性;分析了燃料与空气不同预混量以及二次风流速对燃烧器的燃烧温度、主要自由基含量、燃烧污染物等的影响规律。结果表明,随着预混量(一次空气系数)增大,峰值温度大幅度升高,NO峰值质量分数先增大后降低,CO峰值质量分数逐渐增大;随着二次风流速(过量空气系数)增大,温度与污染物含量变化很小,与预混量的影响相比,二次风流速的影响几乎可以忽略不计。  相似文献   

4.
湍流模型对钝体燃烧器流场模拟的影响   总被引:2,自引:3,他引:2  
湍流燃烧过程涉及燃烧反应和湍流在微小时间和空间尺度上的耦合,因此湍流模型的有效性对燃烧器流场CFD模拟的准确性有重要影响。采用5种k-ε类和k-ω类两方程模型和雷诺应力模型模拟了钝体燃烧器内冷流流场,并采用PIV测量方法进行了实验验证。比较和分析数值模拟和PIV实验结果发现,不同湍流模型的模拟结果在诸如速度分布和涡结构上存在较大差别,标准k-ε模型和RNGk-ε的模拟流场最接近本文的实验结果。  相似文献   

5.
A new quenching process using the cold pyrolysis gas has been proposed for the partial oxidation (POX) of methane to recover the heat.The mixing of hot product gas and cold pyrolysis gas in milliseconds is critical to this new approach.Two most widely-used rapid mixing configurations,i.e.the jet-in-cross-flow (JICF) and impinging flow configurations,are compared in terms of mixing and quenching performances using computational fluid dynamics (CFD) coupled with detailed reaction mechanism Leeds 1.5.The mixedness,residence time distribution,temperature decreasing rate and loss ratio of acetylene during the quenching are systematically studied.The results show that the impinging flow has a more uniform mixing and narrower residence time distribution than the JICF.However,the temperature decreasing rate of the mainstream is faster in the JICF than in the impinging flow.The loss ratio of acetylene in the quenching process is 2.89% for the JICF and 1.45% for the impinging flow,showing that the impinging flow configuration is better and feasible for the quenching of POX of methane.  相似文献   

6.
The influence of burner-port geometry in the mechanisms of hydrocarbon oxidation and NOx formation from a 50 kW industrial-type methane-fired burner was investigated experimentally. Imaging and tomographic reconstruction techniques were used to assess the effects of port geometry upon flame visible length and C2 chemiluminescence distribution in the recirculation zone. C2 emission of methane flames depicts that low fuel jet velocities allow very rich conditions at recirculation zone and lead methane oxidation through O2-scarcity mechanism. Higher velocities imply that methane oxidises via a path including dissociation into free radicals. In-furnace measurements were performed from a refractory-lined vertical furnace. NOx concentration results revealed that NO formation is closely connected with the dissociation process, suggesting that prompt-NOx mechanism is more important than hitherto supposed.  相似文献   

7.
The hydrodynamic behavior of a two impinging streams cyclone reactor (TISCR) was simulated using the computational fluid dynamics (CFD) technique. An Eulerian multiphase model has been used to compute the unsteady flow of a solid–liquid suspension in a 3D geometric configuration. The mean residence time (tm) and holdup of solid particles were calculated from a number of simulated results obtained at different solid and liquid flow rates. The CFD simulation results were compared with the experimental data available in the literature and a fairly well agreement was observed. Such a correlation was gradually improved with increasing solid flow rate.  相似文献   

8.
The single-loop flow fields in Rushton turbine stirred tanks with clearance C=0.15T (T is tank diameter) were investigated by using particle image velocimetry (PIV) experiments and large eddy simulation (LES) methods. The velocity and turbulent kinetic energy (TKE) were carefully measured and resolved with high resolution camera. The regions with high TKE are affected by the movement of the trailing vortices generated behind the impeller blades. The effects of both geometrical configuration and Reynolds number were discussed. It is found that the Reynolds number has little effect on the mean flow for the configuration of impeller diameter D=T/3, C=0.15T. However, the single-loop flow pattern is changed into a double-loop one if D is increased from T/3 to T/2. The LES results were compared with the PIV experiments and the laser Doppler anemometry (LDA) data in the literature. The effect of the grid was validated, and the levels of local anisotropy of turbulence near the impeller discharge regions were investigated. Both the phase-averaged and phase-resolved LES results are in good agreement with the PIV experimental data, and are better than the predictions of the kε model. The agreement shows that the LES method can be used to simulate the complex flow fields in stirred tanks.  相似文献   

9.
Confined impinging jet reactor(CIJR) is a typical process intensification device used in the chemical industry.In this study, two dimensional Particle Image Velocimetry(PIV) and Large Eddy Simulation(LES) method were used to investigate the flow field in a CIJR with jets of diameter 3 mm under highly turbulent condition.The results showed LES can predict the velocity and Turbulence Kinetic Energy(TKE) distributions in the reactor well by comparing with the PIV results.In the CIJR, the stagnation point fluctuates with the turbulence, and its instantaneous position accords with the normal distribution.Three methods, including s–t representation, Lumley–Newman triangle and A–G representation, were used to compare the turbulence anisotropy in the mixing chamber.It was found that the anisotropy in the impinging area and at the edge of impinging jet was strong and the maximum deviation was up to 40%.The results from 2 DPIV would lead to an overestimation of the turbulent kinetic energy as much as 20% to 30% than the results from the three dimensional numerical simulation.  相似文献   

10.
The simulation of correct flow and pressure fields in the radiation section of industrial thermal cracking furnaces is of practical interest since the amount of combustion air taken in by the burners in general is partly determined by the pressure field. For such engineering purposes often a (practical) simplified numerical treatment of the viscous terms in the flow equations is used to reduce the computational cost. It is shown that the interaction between such a simplified numerical treatment of the viscous terms and the alignment of the cell interfaces with the coordinate system can result in an erroneous (non-physical) calculation of the pressure field. This alignment problem is predominantly present when using a semi non-structured prismatic grid to solve the flow equations. Using a fully non-structured tetrahedral grid avoids this problem because of the random orientation of the cell interfaces for this type of grid. This is confirmed by assuring that the calculation results are independent with respect to grid refinement. At the same time the influence of the presence of the reactor tubes on the velocity field inside the furnace is examined.  相似文献   

11.
张建伟  马彦东  冯颖 《化工进展》2012,31(2):268-273
分别介绍了几种现代典型的流动测量技术包括热线风速仪(HWA)、激光多普勒测速技术(LDV)、相位激光多普勒技术(PDA)、激光粒子图像测速技术(PIV)及平面激光诱导荧光技术(PLIF)的基本工作原理。在对这些技术在近几年的应用状况进行了介绍和分析,指出使用这些测量技术对撞击流混合器内流场进行测试的重要意义。同时介绍了一种新型撞击流装置,并对撞击流的进一步研究进行展望。  相似文献   

12.
The study is an experimental investigation of the discharge flow coefficient at a doorway‐type opening in the case of a fire in an enclosure open to atmosphere. Natural and mixed convection flows are considered with the use of mechanical ventilation. The discharge coefficient is defined as the ratio between the effective flow rate determined experimentally and a theoretical flow rate based on a Bernoulli approach. The effective mass flow rate is obtained from velocity field measured with stereoscopic particle image velocimetry technique. The theoretical flow rate is calculated from vertical temperature profiles measured from both sides of the doorway. Only inflow rate is considered for the calculation of the discharge coefficient. In natural convection mode, a CD value of 0.54 ± 0.5 is obtained on a reduced‐scale opening (to be compared with 0.68 at large scale). In a mixed convection case, the discharge coefficient is much lower and reaches 0.26 ± 0.06. This study shows that the discharge coefficient CD may vary significantly regarding the dimension of the opening and the flow conditions (natural and mixed convection). It illustrates the limits of considering a constant discharge coefficient when dealing with doorway flows in a confined and mechanically ventilated compartment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
An experimental study on stability limits of premixed hydrogen‐air flames in planar microcombustors (H = 1 mm and 1.5 mm) partially filled with porous medium is carried out, focusing on the effects of combustor sizes and filling conditions. Critical conditions for blow‐off, flashback, and breaking through the porous medium are experimentally measured. The blow‐off limits are nearly independent of combustor sizes and filling conditions, while the flashback limits are strongly influenced by the combustor size and the filling conditions. Critical values for breaking through are identified with two different methods, and it is shown that standing combustion waves are settled over a range of velocities, instead of a fixed value of filtration velocity, which is considered an important characteristic of microcombustion. Most results can be explained by the classic boundary velocity gradient theory by von Elbe and Lewis, and thus the validity of the theory to the present channel spacings is confirmed. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2571–2580, 2015  相似文献   

14.
The formation and destruction of NO in turbulent propane diffusion flames   总被引:1,自引:0,他引:1  
Ph. Meunier  M. Costa  M.G. Carvalho 《Fuel》1998,77(15):1705-1714
This paper describes a study of the formation and destruction of NO in turbulent propane diffusion flames with recourse to both experiments and modelling. Detailed in-flame measurements of local mean gas species concentrations of O2, CO, CO2, unburnt hydrocarbons and NOx and local mean gas temperature have been performed for three flames — two of them with the same Froude number and two with the same Reynolds number. These experimental data have been analysed with the aid of a mathematical model. For the NO calculations, three reaction schemes have been used: the Zeldovich reactions, an overall approximate prompt reaction, and a 27 reaction scheme, which includes the thermal NO and the prompt NO reactions and the NO to HCN recycle via fuel NO reactions. The main conclusions are that in the present flames: (1) the prompt NO (or Fenimore) mechanism is the dominant route for the NO formation; and (2) the reactions between NO and hydrocarbon radicals, recycling NO to HCN via the fuel NO reactions, play an important role in the global NO reduction.  相似文献   

15.
Measurements on pulsed impinging jets with 3D-particle tracking velocimetry (3D-PTV) system and 6-degree-of-freedom (DOF)-motion tracking system were carried out. Pulsed round jets were impinged on an elastic plate and the flow field near the plate was measured with a 3D-PTV system while the motions of the flexible plate was measured with 6D-motion tracking system. The measurement system consists of four cameras, light sources (Nd-Yag laser, Ar-ion laser, Black lamp) and a host computer. The nozzle diameter is D = 15 mm and two major experiments have been carried out for the cases of the distances between the nozzle tip to the elastic wall are z/D = 2.3 and 6.0. The pulsed jets were controlled by a solenoid valve and were impinged onto an elastic plate (material: silicon, diameter: 350 mm, thickness: 0.5 mm, hardness: 15). The measurement system was synchronized with the valve opening time. The Reynolds numbers were 20,000 and 24,000 when the jets were impinged with the volume velocities. In the first experiments a macroscopic interprets on the flow–structure interactions (FSI) was made using three-dimensional vector fields of the flow and three-dimensional displacements of the elastic plate. In the second experiments a microscopic interprets on the FSI was made using two-dimensional velocity vectors and three-dimensional displacements of the elastic plate. Experimental results showed that the elastic plate moved slightly to the opposite direction of the jet direction at the time of valve opening. It has been shown that the vortices travelling over the surface of the wall made the elastic wall distorted locally.  相似文献   

16.
A CFD (computational fluid dynamics) model of a solvent extraction pulsed column has been developed and run with a single water phase. The results are compared with experimental measurements taken on a pilot scale column using PIV (particle image velocimetry).The pulsed column investigated had disk-doughnut internals and was operated under pulsing intensities ranging from 10 to 32.5 mm/s. PIV measurements of velocity were used to validate the CFD model and to characterise the pulsing flow of a single phase through the column. The CFD modelling was performed for the same geometry and operating conditions using a 2D computational grid and a low Reynolds Number k-ε turbulence model. An improved velocity prediction was achieved by adding a gap between the doughnut internal and the pulsed column wall. The combined measurements and predictions give insight into the effect of the geometry internals on the flow hydrodynamics in the pulsed column.  相似文献   

17.
Lightweight magnesia aggregates were fabricated using high-purity MgO agglomerates with the addition of Mg(OH)2 as a pore former. The pore evolution and its relationship to the resulting properties were investigated. Mg(OH)2 decomposition increased the number of inter-agglomerate pores, which subsequently affected the porosity and pore structure. When Mg(OH)2 was 0–20 wt%, the inter-agglomerate pores were converted to both open and closed small pores, which effectively reduced the thermal conductivity and improved the thermal shock resistance (TSR) by accommodating thermal stress and inducing crack deflection. Small pores also favored the formation of a dense (Mg, Fe)O corrosion layer, preventing further slag penetration. However, large open pores occurred with further increasing Mg(OH)2 content, which dramatically deteriorated the TSR and slag resistance. The specimen with 20 wt% Mg(OH)2 exhibited the best overall performance, with a thermal conductivity of 16.6 W/(m·K) at 500 °C, and a residual flexural strength ratio of 32.3%; its slag resistance was comparable with that of dense magnesia.  相似文献   

18.
The laminar flow in an impinging jet contactor is examined as a first step toward the development of new technology for fast mixing of viscous fluids. The flow, velocity, and stretching fields in an impinging jet contactor are quantified for low Reynolds number flow using three-dimensional numerical simulations and particle image velocimetry measurements. Computational and experimental velocity fields are in close agreement, as quantified by the velocity probability density functions. Two steady-state flow regimes are found to exist: for jet Reynolds numbers (Rej) < 10, the jets do not impinge and the velocity field scales linearly with Reynolds number; for Rej > 10, the jets begin to impinge and recirculation regions form above and below the impingement point. The magnitude of the rate-of-strain tensor is calculated as a function of Rej. While areas of essentially zero stretching occupy most of the flow domain, very high rates of stretching occur at specific locations in the flow. The maximum and average rates of stretching in the contactor increase roughly linearly as a function of Reynolds number. Mixing simulations show that no mixing occurs for the steady flow in a symmetric-jet contactor. However, mixing is improved substantially by a slight modification of the impinging jet geometry that disrupts geometric symmetry.  相似文献   

19.
付晓锋  高鹤年  唐贵川 《广州化工》2010,38(7):203-204,211
介绍了锦西石化北蒸馏装置在加热炉改造中应用新型强化传热燃烧器的情况。强化传热燃烧器的使用,改善了辐射室的传热模式,提高了加热炉炉管的传热强度,从而实现同等热负荷下热效率的提高、炉膛温度和排烟温度的降低、烟气有害物质的减少。环保、经济、社会效益显著。  相似文献   

20.
Impinging stream dryer (ISD) is an alternative for drying high-moisture particulate materials. Due to the complex multiphase transport phenomena that take place within an ISD, use of a reliable computational model instead of a tedious experimental route to aid the design of the dryer is desirable. In the present study, computational fluid dynamics were used in combination with the discrete element method (CFD-DEM) to predict, for the first time, the multiphase transport phenomena within a coaxial ISD; results from a model that does not consider particle-particle interactions (CFD) were also obtained and compared with those from the CFD-DEM model. In all cases, high-moisture particles having negligible internal transport resistance were assumed. Both models were used to simulate the gas-particle motion behavior, particle mean moisture content, particle mean residence time, and particle residence time distribution. The simulated results from both models were compared with the experimental data whenever possible. The results showed that the CFD-DEM model could be utilized to predict the particle motion behavior and led to more physically realistic results than the CFD model. The CFD-DEM model also gave predictions that were in better agreement with the experimental mean particle residence time and moisture content data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号