首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用Gleeble-1500热模拟试验机,在变形温度420~570℃、应变速率0.001~1s-1、最大变形程度60%的条件下,对Al-W合金粉末压制体进行热压缩试验。分析变形温度和应变速率对Al-W合金高温塑性变形应力的影响,计算出变形激活能为451.21k J/mol,并建立了Al-W合金本构方程。  相似文献   

2.
采用等温压缩分析了Fe0.25Cr0.25Ni0.25Mn0.25中熵合金在900~1050 ℃、0.001~1 s-1应变速率范围内的流变行为。结果表明,热变形以动态再结晶为主,与其他低堆垛层错能的合金一样,流变曲线呈单峰形状。建立了本构模型来描述整个变形过程,分析了加工硬化行为和动态软化过程。利用Kocks-Mecking图发现,在加工硬化阶段,合金的硬化速率随应力呈线性降低,因此应力-应变行为可以用传统的位错密度模型来描述。同时,采用经典的JMAK方程描述由动态再结晶引起的软化过程。此外,对本构模型进行了进一步的修改,减少了参数的数量,简化了回归分析。所提出的半物理模型不仅可以准确地预测应变范围外的应力-应变行为,而且可用于其他低层错能合金。  相似文献   

3.
使用电子万能试验机和分离式霍普金森杆装置(SHPB)研究了HST2425钛合金在温度为293~673 K、应变速率为0.0001~6500 s-1下的准静态和动态力学性能。结果表明,HST2425钛合金的最大应力和最大应变均随应变速率的增大而增加,但是应变速率超过3500 s-1后最大应力的增加程度降低,在应变速率超过5500 s-1后最大应变的增加程度也降低。随变形温度的升高,流变应力显著降低,并且温度和应变速率在动态压缩过程中具有交互作用。根据试验结果建立了HST2425钛合金的原始Johnson-Cook(J-C)模型及其修正模型,且修正模型与试验值的相关性比原始模型更好,表明修正模型在预测HST2425钛合金动态冲击变形行为方面具有更高的准确性和适用性。  相似文献   

4.
利用Gleeble-3500型热模拟试验机对Zr-4合金试样进行等温恒应变速率压缩实验,对其热变形行为进行分析,综合考虑变形温度对Young's模量和自扩散系数的影响,建立了 Zr-4合金基于应变耦合的物理本构模型.研究结果表明:合金的峰值应力对变形温度和应变速率敏感,峰值应力会随应变速率的增加或变形温度的降低而增大;...  相似文献   

5.
采用Gleeble-3800型热模拟试验机对MoNb合金进行等温恒应变速率压缩试验,研究该合金在变形温度900~1200℃和应变速率0.01~10 s^-1条件下的热变形行为,计算其热变形激活能。结果表明:变形温度和应变速率对流动应力具有显著影响,流动应力随变形温度的升高和应变速率的降低而减小。误差分析表明,采用多元线性回归法建立的MoNb合金本构关系模型具有较高的精度,该模型的预测值误差小于10%的数据点占总数的92.86%,相关系数和平均相对误差分别为0.976和4.08%,能较为准确的预测合金的高温流动应力。  相似文献   

6.
利用分离式霍普金森压杆系统对FeCoCrNiCx(x=0,0.08,0.2)高熵合金开展高应变速率动态压缩试验,绘制出材料在2 300~5 600 s-1应变速率范围内的真应力-真应变曲线,分析了应变速率对材料塑性的影响,并构建了材料的J-C本构关系。结果表明,在准静态与动态加载下,FeCoCrNiCx系高熵合金表现出明显的加工硬化行为,在高应变速率下表现出良好的塑性变形能力;FeCoCrNiCx系高熵合金随着应变速率的提高,合金的加工硬化指数不断增大,抵抗变形能力不断增强,并且对应变速率有较高的敏感性。  相似文献   

7.
采用电子材料试验机,研究C276高温合金在变形温度650℃~750℃、拉伸速度0.35mm/min~35mm/min条件下的高温拉伸变形行为,分析了变形温度、应变速率对C276合金变形行为的作用及影响规律。结果表明,变形温度和应变速率对合金流变应力有显著影响,流变应力随变形温度升高而降低,随应变速率提高而增大。在变形温度700℃、拉伸速度0.35mm/min和3.5mm/min时,曲线呈现出明显的稳态流变应力特征,合金变形机制以动态回复为主;在变形温度750℃时,随着应变量的增加,合金内发生动态再结晶。利用Zener-Hollomon参数建立了C276合金的变形抗力模型,求得变形激活能为327.66kJ/mol。为C276合金的热加工工艺制定,提供了理论和试验的依据。  相似文献   

8.
轻质高强γ-TiAl合金是航空发动机关键结构件减重的首选材料。本文概括总结了γ-TiAl合金的高温压缩变形力学行为及本构模型,重点分析了变形工艺参数、变形历史和预热处理、元素、原始组织对γ-TiAl合金高温压缩变形力学行为的影响。本文概括总结了三种本构模型:经验型本构模型、不同软化机制下的本构模型和耦合变形机理的微观模型,并对Arrhenius模型和H-S模型进行了详细分析。同时,对不同软化机制下的本构模型和耦合变形机理的模型进行了总结分析。最后指出,γ-TiAl合金高温压缩变形力学行为的未来研究重点是建立耦合多相协调性高温变形机理的本构模型。  相似文献   

9.
为了研究GH1016合金的高温热变形行为,利用Gleeble-3500热模拟试验机进行变形温度在1000~1150℃范围内,应变速率为0. 1~10 s-1,总压缩变形量为60%的热压缩试验,通过获得的真应力-真应变曲线研究了其变形行为。研究结果表明:真应力随变形温度的降低和应变速率的升高而增加。在一定的变形温度下,随着应变速率的增加,峰值应力和峰值应变均增加;在一定的应变速率下,随变形温度的升高,峰值应力和峰值应变减小。根据真应力-真应变曲线中的峰值应变和峰值应力数据,利用数据拟合的方法分别求得了GH1016合金的热变形本构方程和临界变形条件方程。在本实验条件下,GH1016合金发生动态再结晶的热激活能为456. 55 k J·mol-1。  相似文献   

10.
本文对Al-9.39Zn-1.92Mg-1.98Cu合金做等温热模拟压缩实验,变形温度为300 ℃~460 ℃,应变速率为0.001 s-1~10 s-1,变形量为60%。结果表明:变形时,合金的流变应力力随着变形温度的降低或应变速率的增大而增大。由于热变形时存在摩擦影响,对流变应力曲线进行修正.结果发现摩擦修正后的应力值低于实验值,摩擦力对流变应力的影响程度随着温度的降低和应变速率的增大而增大。基于经典的Arrhenius方程,考虑应变量对材料常数(α,n,Q和A)的影响,构建该合金在热变形时的本构方程。评价改进的本构方程预测能力发现流变应力值与实测值吻合度较高,其相关度高达93.5%。  相似文献   

11.
60NiTi合金具有强度高、耐磨性好等一系列优异的性能。但由于它难热成型,因此大大限制了在工业领域的广泛应用。为了确定60NiTi合金最优的热加工工艺,研究了铸态60NiTi合金在750~1 050℃,0.01~1 s-1变形速率下的热变形行为,并采用包含Arrhenius项的Z参数法构建了高温变形本构方程。结果显示:仅在1 000℃、1 s-1速率下高温变形时60NiTi合金发生了明显的动态再结晶,温度升高能提高60NiTi合金的热成型性能。在高温(1 050℃)大变形速率下(1 s-1)加工60NiTi合金的热成型性能最好。  相似文献   

12.
为了研究Ti6321合金在高温、高应变率下的力学行为,采用分离式霍普金森压杆装置对Ti6321合金进行室温(25℃)和高温(200、400、600℃)动态压缩试验,对其在高温和高应变率下的力学性能、应变率敏感性和温度敏感性进行了研究。采用聚类全局优化算法构建了双态组织Ti6321合金在103s-1下的Johnson-Cook本构模型。结果表明,双态组织Ti6321合金在室温和高温下均存在应变率硬化效应,但试验温度对流变应力的影响比应变率的影响更大。随着压缩试验温度升高,流变应力显著降低,温度敏感因子升高。Johnson-Cook模型拟合的曲线与实验曲线吻合良好,可以用于Ti6321合金高应变率下的力学仿真计算。  相似文献   

13.
近年来,立方晶体结构的高熵合金的在低温条件下(77K)的力学性能成为了研究热点。研究发现,由于一些立方晶体结构体系的高熵合金的层错能随着温度的降低而降低,比较室温条件下,其低温综合力学性能呈现提高的趋势,是一种很有希望的高性能低温结构材料。本文综述了近年来一些立方晶体结构的高熵合金在低温条件下的力学行为的研究进展,重点对高熵合金在低温环境下塑性变形过程中的强韧化机理进行了讨论,并给出了未来的发展方向。  相似文献   

14.
采用Gleeble-3800热模拟机研究粉末冶金Ti-47Al-2Cr-2Nb-0.2W-0.15B(摩尔分数,%)合金在变形温度为1 100~1 250 ℃、应变速率为10-3~100 s-1和变形率为50%条件下的高温变形行为.结果表明:Ti-47Al-2Cr-2Nb- 0.2W-0.15B合金在高温变形初始阶段,流动应力随应变的增加迅速增加;当应变超过一定值后,流变应力开始下降并逐渐趋于稳定,出现稳态流动特征;随着形变温度的升高和应变速率的增加,合金高温变形时的峰值应力和稳态应力显著降低.利用热模拟压缩实验数据,基于Arrhenius 方程和Zener-Hollomon参数,运用多元回归分析方法建立Ti-47Al-2Cr-2Nb-0.2W-0.15B合金在高温变形过程中的流变应力本构模型.应用DEFORMTM 3D软件验证该流变应力本构模型的有效性,结果表明所得高温流变应力本构模型能够较好地预测Ti-47Al-2Cr-2Nb-0.2W- 0.15B合金的高温变形行为.  相似文献   

15.
采用Geeble- 1500热模拟实验机测试了高强耐热Mg-6Gd-3Y-0.5Zr合金在变形温度为300~500℃、应变速率为10-3~1 s-1下的流变力学行为,采用扫描电子显微镜对其微观组织进行观察,分析了幂函数(PI)、指数函数(EI)和双曲正弦函数(SI)半经验本构方程对该合金变形行为拟合的适用性.结果表明:EI拟合实验结果精度大于PI和SI的,即使对SI函数中材料常数α进行一定优化处理得到SIO函数的拟合精度,也与EI函数十分接近.合金中高温耐热相提高合金高温下的强度是EI拟合优于PI和SI的原因.  相似文献   

16.
采用热模拟压缩试验研究了Ti600合金在变形温度为800~1100℃、应变速率为0.001~10s-1范围内应力-应变曲线的变化规律。研究结果表明:Ti600高温钛合金热变形的流变应力随温度的升高和应变速率的降低而减小;随着应变的增大,合金的真应力-真应变曲线在经历了明显的加工硬化阶段后达到最大值,然后渐渐出现流变“软化”现象。以经典的双曲正弦形式的模型为基础建立了Ti600合金热变形的本构方程,同时也通过对数据回归处理确定了合金不同温度下的应力指数n、应变激活能Q等数值。  相似文献   

17.
Ti600合金的高温本构方程   总被引:1,自引:0,他引:1  
采用热模拟压缩试验研究了Ti600合金在变形温度为800~1100℃、应变速率为0.001~10s^-1范围内应力一应变曲线的变化规律。研究结果表明:Ti600高温钛合金热变形的流变应力随温度的升高和应变速率的降低而减小;随着应变的增大,合金的真应力一真应变曲线在经历了明显的加工硬化阶段后达到最大值,然后渐渐出现流变“软化”现象。以经典的双曲正弦形式的模型为基础建立了Ti600合金热变形的本构方程,同时也通过对数据回归处理确定了合金不同温度下的应力指数n、应变激活能Q等数值。  相似文献   

18.
本文对两种钽钨合金(Ta-2.5W和Ta-10W,钨的质量分数分别为2.5 %和10 %)的准静态和动态变形行为进行了系统研究。根据准静态压缩实验、霍普金森压杆(SHPB)实验结果,表明两种钽钨合金的屈服应力对加载应变率和钨的含量较为敏感,并拟合得到了两种钽钨合金的JC本构模型。其次,为验证本构模型的合理性,开展了泰勒撞击实验和数值模拟研究,应变率范围为103~104 s-1,数值模拟得到的泰勒杆侧轮廓与撞击端面轮廓与实验吻合较好。最后,为研究钽钨合金变形后的细观特性,对杆件进行了光学显微照片分析。本文的研究方法与结果可为材料本构关系的确定提供借鉴。  相似文献   

19.
在-50~700℃较大温度范围和10-4~103s-1应变速率范围内,采用材料试验机(MTS)及分离式霍普金森压杆(SplitHopkinson Pressure Bar)分别对退火态Ta-10W合金进行准静态和动态压缩试验,得到应力.应变曲线.结果表明:合金的屈服应力和流动应力都表现出很强的应变速率与温度敏感性,都随应变速率的增加而增加,随温度的升高而减小.利用所测得的应力-应变曲线拟合了Johnson-COOk本构方程,与实验数据吻合较好.  相似文献   

20.
马康  宋健  冯瑶  袁斌先 《锻压技术》2023,48(4):249-255
通过不同温度及应变速率下的单向拉伸试验,获得了7A09铝合金板材关键力学性能参数的变化规律。结果表明:在应变速率一定的条件下,当温度降低时,7A09铝合金的抗拉强度与流动应力随之升高,当温度升高时,断后伸长率有明显提高。基于Fields&Backofen本构方程,建立7A09铝合金温拉伸时的应力-应变本构模型,分析和探讨了在不同温度状态下7A09铝合金的强化规律。结果表明:7A09铝合金的应变强化指数随着温度的升高而减小,而应变速率敏感性指数则显著提高,应变速率的强化作用得到了显著增强。以温成形技术生产的桁条加强件为例,利用本构模型进行有限元模拟,确定成形速度为5000 mm·s-1时,零件减薄率最小;温度为175℃时,零件壁厚分布最为均匀,最小减薄率仅为3.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号