首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The leakage flow is that liquid does not push gas bubbles and leaks through the channel corners. This leakage flow was confirmed by tracking particles moving in the liquid film with a double light path method and was quantified by tracking the gas–liquid interface movement. The results show that leakage flow varies during bubble formation process. The average net leakage flow Qnet‐leak in a bubble formation cycle at T‐junction can be as large as 62.4% of the feeding liquid flow rate, depending on the liquid properties. Qnet‐leak for regular flow at main channel is much smaller, ranging from about 0 to 30% of the feeding liquid flow rate. The difference between the two leakage flows would lead to an increase in liquid slug length after generation. Finally, the effects of parameters such as phase flow rates, surface tension, and viscosity were investigated. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3964–3972, 2015  相似文献   

2.
Microchannels have great potential in intensification of gas–liquid–liquid reactions involving reacting gases, such as hydrogenation. This work uses CO2–octane–water system to model the hydrodynamics and mass transfer of such systems in a microchannel with double T‐junctions. Segmented flows are generated with three inlet sequences and the size laws of dispersed phases are obtained. Three generation mechanisms of dispersed gas bubbles/water droplets are identified: squeezing by the oil phase, cutting by the droplet/bubble, cutting by the water–oil/gas–oil interface. Based on the gas dissolution rate, the mass transfer coefficients are calculated. It is found that water droplet can significantly enhance the transfer of CO2 into the oil phase initially. When bubble‐droplet cluster are formed downstream the microchannel, droplet will retard the mass transfer. Other characteristics such as phase hold‐up, bubble velocity and bubble dissolution rate are also discussed. The information is beneficial for microreactor design when applying three‐phase reactions. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1727–1739, 2017  相似文献   

3.
Characteristics of liquid–liquid slug flow are investigated in a microchannel with focus on the leakage flow that bypasses droplets through channel gutters. The results show that the leakage flow rate varies in a range of 10.7–53.5% and 8.3–30.9% of the feed flow rate, during the droplet formation (i.e., at T‐junction) and downstream flow (i.e., in the main channel), respectively, which highly depends on Ca number and wetting condition. Empirical correlations are proposed to predict them for perfectly and partially wetting conditions. Leakage flow contribution is further used to improve the Garstecki model for size scaling in order to extend its suitability for both squeezing and shearing regimes. The instantaneous flow rates of the immiscible phases are found to fluctuate periodically with the formation cycles, but in opposite behavior. The effect of the presence of leakage flow on such fluctuation are investigated and compared with gas–liquid systems. © 2017 American Institute of Chemical Engineers AIChE J, 63: 346–357, 2018  相似文献   

4.
Gas–aqueous liquid–oil three‐phase flow was generated in a microchannel with a double T‐junction. Under the squeezing of the dispersed aqueous phase at the second T‐junction (T2), the splitting of bubbles generated from the first T‐junction (T1) was investigated. During the bubble splitting process, the upstream gas–oil two‐phase flow and the aqueous phase flow at T2 fluctuate in opposite phases, resulting in either independent or synchronous relationship between the instantaneous downstream and upstream bubble velocities depending on the operating conditions. Compared with two‐phase flow, the modified capillary number and the ratio of the upstream velocity to the aqueous phase velocity were introduced to predict the bubble breakup time. The critical bubble breakup length and size laws of daughter bubbles/slugs were thereby proposed. These results provide an important guideline for designing microchannel structures for a precise manipulation of gas–liquid–liquid three‐phase flow which finds potential applications among others in chemical synthesis. © 2017 American Institute of Chemical Engineers AIChE J, 63: 376–388, 2018  相似文献   

5.
Both chemical (by adding 0.05 M NaOH) and physical absorption of CO2 into aqueous glycerol solutions with viscosity up to 45.6 mPa·s in a microchannel are investigated. The concentration distribution pattern, absorption time, and mass transfer coefficient are analyzed and discussed. A new concentration distribution pattern is observed with the lowest concentration locating at the channel center. It is shown for the first time that presents a positive relationship with liquid viscosity, which is explained by the essential role of the mass exchange between the liquid film and bulk liquid slug. This mass exchange may lead to a rise in k L when increasing the liquid viscosity under some cases in chemical absorption. A mass transfer model is successfully applied to predict the bubble size evolution in physical absorption. The model also shows about 10–46% of the mass transfer contribution from liquid films before saturation.  相似文献   

6.
A unique normalized radial pressure profile characterizes the bed of a gas‐solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950–1240 kg/m3, 1–2 mm, 2 kg to maximum solids capacity, and 0.4–0.8 Nm3/s (corresponding to gas injection velocities of 55–110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized—with respect to the overall pressure drop—pressure profiles for different gas injection velocities in particle‐free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 61: 4114–4125, 2015  相似文献   

7.
Hydrodynamics of gas–liquid two‐phase flow in micropacked beds are studied with a new experimental setup. The pressure drop, residence time distribution, and liquid holdup are measured with gas and liquid flow rates varying from 4 to 14 sccm and 0.1 to 1 mL/min, respectively. Key parameters are identified to control the experimentally observed hydrodynamics, including transient start‐up procedure, gas and liquid superficial velocities, particle and packed bed diameters, and physical properties of the liquids. Contrary to conventional large packed beds, our results demonstrate that in these microsystems, capillary forces have a large effect on pressure drop and liquid holdup, while gravity can be neglected. A mathematical model describes the hydrodynamics in the micropacked beds by considering the contribution of capillary forces, and its predictions are in good agreement with experimental data. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4694–4704, 2017  相似文献   

8.
The miscible liquid‐liquid two phases based on Taylor flow in microchannels was investigated by high‐speed imaging techniques and Villermaux/Dushman reaction. The mixing based on Taylor flow was much better compared with that without introducing gas in microchannels, even the ideal micromixing performance could be obtained under optimized superficial gas and liquid velocities. In the mixing process based on Taylor flow, the superficial gas and liquid velocities affected the lengths and the velocities of Taylor bubble and liquid slug, and finally the micromixing performance. The formation process of Taylor flow in the inlets, the initial uniform distribution of reactants and the internal circulations in the liquid slug, and the thin liquid films all improved the mixing performance. Furthermore, a modified Peclet number that represented the relative importance of diffusion and convection in the mixing process was proposed for explaining and anticipating micromixing efficiency. © 2011 American Institute of Chemical Engineers AIChE J, 58: 1660–1670, 2012  相似文献   

9.
微通道内气-液弹状流动及传质特性研究进展   总被引:3,自引:2,他引:1       下载免费PDF全文
尧超群  乐军  赵玉潮  陈光文  袁权 《化工学报》2015,66(8):2759-2766
气-液弹状流,又称Taylor流,是一种以长气泡和液弹交替形式流动的流动形态。微通道内气-液弹状流因其气泡与液弹尺寸分布均一、停留时间分布窄、径向混合强等优点,是一种适于强化气-液反应的理想流型。本文首先介绍了微通道内气泡的生成机理、气泡和液弹长度,以及气泡生成阶段的传质特征。其次系统综述了主通道中弹状流动及传质过程的研究进展,包括气泡形状与液膜厚度、液弹内循环和泄漏流特征、气-液传质系数的测量与预测,以及物理与化学吸收过程中的传质特性等方面内容。最后阐述了当前研究的不足并展望了气-液弹状流的研究方向。  相似文献   

10.
11.
Flow patterns of liquid‐liquid two‐phase fluids in a new helical microchannel device were presented in this paper. Three conventional systems were considered: kerosene‐water, n‐butyl acetate‐water, and butanol‐water. Six different flow patterns, slug flow, continuous parallel flow, discontinuous deformation parallel flow, discontinuous deformation parallel‐droplet flow, droplet‐slug flow, and filiform‐droplet flow, were observed. The influence of interfacial tension, microchannel structure, and rotation rate on two‐phase flow patterns were studied, and a universal flow pattern map was presented and discussed. The systems without mass transfer (0.1 g/g (10 %) tri‐n‐butyl phosphate (TBP)‐water, 0.2 g/g (20 %) TBP‐water, and 0.8 g/g (80 %) TBP‐water) and the system with mass transfer (0.8 g/g (80 %) TBP‐0.62 g/g (62 %) H3PO4) were used to verify the validity of the proposed universal flow pattern map in predicting flow patterns. The results showed that the former compared with the latter can be predicted more accurately by the universal flow pattern map.  相似文献   

12.
Ultrasonic microreactors were used to intensify gas‐liquid mass‐transfer process and study the intensification mechanism. Fierce surface wave oscillation with different modes was excited on the bubble. It was found that for slug bubbles confined in smaller microchannel, surface wave oscillations require more ultrasound energy to excite due to the confinement effect. Cavitation microstreaming with two toroidal vortices was observed near the oscillating bubble by a streak photography experiment. Surface wave oscillation at the gas‐liquid interface increases the specific surface area, while cavitation microstreaming accelerates the interface renewal and thus improves the individual mass‐transfer coefficient. With these two reasons, the overall mass‐transfer coefficient was enhanced by 3–20 times under ultrasonication. As for gas‐liquid flow hydrodynamics, ultrasound oscillation disturbs the bubble formation process and changes the initial bubble length and pressure drop. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1294–1307, 2016  相似文献   

13.
A phenomenological model based on the generalization of the single‐phase Forchheimer equation was recently proposed for predicting pressure drop and phase saturations in gas–liquid co‐current horizontal and downward high‐pressure packed beds. Here, we extend the model to packed‐bubble (co‐current upflow) and trickle‐bed operation using phase saturation power laws similar to Corey relative permeabilities. The power‐law exponents were fitted using a wide pressure gradient and liquid saturation databank in co‐current up/downward packed‐bed flows. It was found that this approach, as well as other in the literature developed for down‐flow reactors apply also to upward flows; the prediction accuracy was comparable for both flow directions to existing literature approaches. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
Droplet breakup in microconstrictions is an important phenomenon in industrial applications. This work aimed to investigate the droplet breakup in the square microchannel with a short square constriction to generate the slug flow, which drew little attention before. Mechanism analysis indicated that this breakup process included the shear-force-dominated, squeezing-force-dominated, and pinch-off stages. Nonuniform daughter droplets were generated in the constriction with their interface restricted in the horizontal and perpendicular directions by the microchannel walls. The average relative deviation of the daughter droplet size was <30%, much lower than that for the breakup with the daughter droplet restricted only in one direction. An empirical equation with a deviation of <20% was provided to show the dependence of the daughter droplet size on the operation conditions. The comparison results suggested that the different restriction effects of microchannel wall on daughter droplets led to the different breakup mechanisms in different constrictions.  相似文献   

15.
Two‐phase hydrodynamics has been experimentally investigated using optical fibre probes in individual channels of a laboratory scale monolith bed. Experimental investigations were carried out to validate the optical probe measurements in a single capillary. Optical probes were positioned at selected single channels of a monolith block, and the signals were processed to assess the local hydrodynamics under cocurrent gas‐liquid downflow configuration, using air and water as fluids. The investigations were performed for three different distributors, viz. single pipe, multipipe, and packed bed distributor configurations. The different distributor configurations were evaluated on the basis of void fraction and bubble frequency for a wide range of flow velocities. The specific novelty aspect of this study comes from the fact that we have undertaken channel scale investigations in monoliths under conditions where we have also reported the global gas‐liquid distribution. Thus, one can readily correlate the bed‐scale hydrodynamics with the local channel‐scale hydrodynamics. © 2016 American Institute of Chemical Engineers AIChE J, 63: 327–336, 2017  相似文献   

16.
This article reports on the influence of elevated pressure and catalyst particle lyophobicity at particle concentrations up to 3 vol % on the hydrodynamics and the gas‐to‐liquid mass transfer in a slurry bubble column. The study was done with demineralized water (aqueous phase) and Isopar‐M oil (organic phase) slurries in a 0.15 m internal diameter bubble column operated at pressures ranging from 0.1 to 1.3 MPa. The overall gas hold‐up, the flow regime transition point, the average large bubble diameter, and the centerline liquid velocity were measured along with the gas–liquid mass transfer coefficient. The gas hold‐up and the flow regime transition point are not influenced by the presence of lyophilic particles. Lyophobic particles shift the regime transition to a higher gas velocity and cause foam formation. Increasing operating pressure significantly increases the gas hold‐up and the regime transition velocity, irrespective of the particle lyophobicity. The gas–liquid mass transfer coefficient is proportional to the gas hold‐up for all investigated slurries and is not affected by the particle lyophobicity, the particle concentration, and the operating pressure. A correlation is presented to estimate the gas–liquid mass transfer coefficient as a function of the measured gas hold‐up: $k_{\rm l}a_{\rm l}/\varepsilon_{\rm g} = 3.0 \sqrt{Du_{\rm b}/d_{\rm b}^3}\;{\rm s}^{-1}$ . © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

17.
18.
Local velocity gradients on a solid spherical surface have been studied in a bubble column and in two- and three-phase fluidized beds, in order to clarify the influence of gas flow. The electrochemical method, measuring apparent local mass transfer coefficients, was verified and used to obtain the local velocity gradients, shear stresses and total frictional forces. The observed mass transfer rate was independent of liquid velocity, owing to a non-changing flow structure around the particles and not to averaging opposing effects. The identity in flow structure also held for three-phase fluidized beds up to a superficial gas velocity of 5 cm s?1. The dramatic increase in velocity gradient on gas introduction was not a result of decreased homogenous density, but was caused by a change in the turbulent structure around a particle, leaving a larger portion of the total drag as frictional drag, thus improving the mass transfer characteristics of the bed. Use of velocity gradient measurements, including span of fluctuations and exposure time, to predict biomass growth and mechanical degradation in a reactor is also discussed.  相似文献   

19.
20.
The gas–liquid two-phase flow pattern, absorption rate and pressure drop of CO2 absorbed into the aqueous solution of the task-specific ionic liquids (1-aminopropyl-3-methylimidazole tetrafluoroborate [Apmim][BF4] and 1-hydroxyethyl-3-methylimidazole tetrafluoroborate [OHemim][BF4]) and halide-free ionic liquid 1-butyl-3-methylimidazolium methylsulfate [Bmim][CH3SO4] were investigated in a microreactor. The absorption mechanism of the three ionic liquids was analyzed employing the 13C NMR spectroscopy. The [Apmim][BF4] was found to have the best ability of CO2 capture compared with the other two ionic liquids, as chemical absorption occurred between [Apmim][BF4] and CO2, while only physical absorption took place between [OHemim][BF4]/[Bmim][CH3SO4] and CO2. The sequence of CO2 absorption rate in three ionic liquids aqueous solutions is: [Apmim][BF4] > [Bmim][CH3SO4] > [OHemim][BF4]. Furthermore, the effects of gas–liquid flow rate and ionic liquids concentration on CO2 absorption rate and pressure drop were studied, the pressure drop models based on various flow patterns were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号