共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
肺部的检查是每年体检的重要一部分。体检中有成百上千的病例,而每个病例中含有许多的肺部横切面CT图像。这些都需要专业医生去逐个筛查出存在肺结节的病例,不仅工作量大而且存在误筛的可能。针对上述问题,把卷积神经网络(CNN)引入筛查存在肺结节的CT图像诊断,提出一种基于CNN的分类算法。在LIDC数据库的实验结果表明,对比应用广泛的lenet-5网络和传统方法等,使用自定义的卷积神经网络将分类的正确率提升了4到10个百分点不等。AUC值为0.821?6,也是几个分类器中最大的。相比于其他方法,该方法能较为准确地识别肺部CT图像,可以为临床诊断提供较为客观的参考。 相似文献
4.
针对传统肺结节检测中存在灵敏度低、假阳性高、小结节难检测的问题,提出一种基于深度卷积神经网络的两阶段肺结节检测框架.第一阶段使用特征金字塔子网提取肺部影像的多层次特征,引入多尺度区域建议子网用于在高灵敏度下检测出所有的候选结节;第二阶段设计级联卷积神经网络模型减少假阳性,通过保留分类错误样本用于重新训练模型,将多个模型... 相似文献
5.
目的 肺结节是肺癌的早期存在形式。低剂量CT(computed tomogragphy)扫描作为肺癌筛查的重要检查手段,已经大规模应用于健康体检,但巨大的CT数据带来了大量工作,随着人工智能技术的快速发展,基于深度学习的计算机辅助肺结节检测引起了关注。由于肺结节尺寸差别较大,在多个尺度上表示特征对结节检测任务至关重要。针对结节尺寸差别较大导致的结节检测困难问题,提出一种基于深度卷积神经网络的胸部CT序列图像3D多尺度肺结节检测方法。方法 包括两阶段:1)尽可能提高敏感度的结节初检网络;2)尽可能减少假阳性结节数量的假阳性降低网络。在结节初检网络中,以组合了压缩激励单元的Res2Net网络为骨干结构,使同一层卷积具有多种感受野,提取肺结节的多尺度特征信息,并使用引入了上下文增强模块和空间注意力模块的区域推荐网络结构,确定候选区域;在由Res2Net网络模块和压缩激励单元组成的假阳性降低网络中对候选结节进一步分类,以降低假阳性,获得最终结果。结果 在公共数据集LUNA16(lung nodule analysis 16)上进行实验,实验结果表明,对于结节初检网络阶段,当平均每例假阳性个数为22时,敏感度可达到0.983,相比基准ResNet + FPN(feature pyramid network)方法,平均敏感度和最高敏感度分别提高了2.6%和0.8%;对于整个3D多尺度肺结节检测网络,当平均每例假阳性个数为1时,敏感度为0.924。结论 与现有主流方案相比,该检测方法不但提高了肺结节检测的敏感度,还有效地控制了假阳性,取得了更优的性能。 相似文献
6.
针对目前胸片的肺结节检测方案的检出率较低,且存在大量的假阳性的问题,提出了一种新的基于卷积神经网络(CNN)的肺结节检测方案.增强肺结节区域的图像信号;选择正、负样本训练卷积神经网络模型,检测结节时用滑动窗口的方法对增强后的图片进行处理得到候选区域;根据候选区域的面积排除假阳性.方案中省略了传统方法中的肺区分割步骤,避免了因此可能丢失的肺结节图像.在日本放射技术学会(JSRT)数据库上测试结果显示,系统在平均每幅图5.0个假阳性水平下敏感度为86%,对不明显和非常不明显的结节检出率达到了84%,优于当前相关文献报道的方法. 相似文献
7.
针对YOLO目标检测算法在小目标检测方面存在的不足,以及难以在嵌入式平台上达到实时性的问题,设计出了一种基于YOLO算法改进的dense_YOLO目标检测算法。该算法共分为2个阶段:特征提取阶段和目标检测回归阶段。在特征提取阶段,借鉴DenseNet结构的思想,设计了新的基于深度可分离卷积的slim-densenet特征提取模块,增强了小目标的特征传递,减少了参数量,加快了网络的传播速度。在目标检测阶段,提出自适应多尺度融合检测的思想,将提取到的特征进行融合,在不同的特征尺度上进行目标的分类和回归,提高了对小目标的检测准确率。实验结果表明:在嵌入式平台上,针对小目标,本文提出的dense_YOLO目标检测算法相较原YOLO算法mAP指标提高了7%,单幅图像检测时间缩短了15 ms,网络模型大小减少了90 MB,明显优于原算法。 相似文献
8.
边缘检测是将图像中的突变的重要信息提取出来的过程,是计算机视觉领域研究热点,也是图像分割、目标检测与识别等多种中高层视觉任务的基础。近几年来,针对边缘轮廓线过粗以及检测精度不高等问题,业内提出了谱聚类、多尺度融合、跨层融合等基于深度学习的边缘检测算法。为了使更多研究者了解边缘检测的研究现状,首先,介绍了传统边缘检测的实现理论及方法;然后,总结了近年来基于深度学习的主要边缘检测方法,并依据实现技术对这些方法进行了分类,对其涉及的关键技术进行分析,发现对多尺度多层次融合与损失函数的选择是重要的研究方向。通过评价指标对各类方法进行了比较,可知边缘检测算法在伯克利大学数据集(BSDS500)上的最优数据集规模(ODS)经过多年研究从0.598提高到了0.828,接近人类视觉水平。最后,展示了边缘检测算法研究的发展方向。 相似文献
9.
针对CT图像肺结节分类任务中分类精度低,假阳性高的问题,提出了一种加权融合多维度卷积神经网络的肺结节分类模型,该模型包含两个子模型:基于二维图像的多尺度密集卷积网络模型,以捕获更宽泛的结节变化特征并促进特征重用;基于三维图像的三维卷积神经网络模型,以充分利用结节空间上下文信息。使用二维和三维CT图像训练子模型,根据子模型分类误差计算其权重,对子模型分类结果进行加权融合,得到最终分类结果。该模型在公共数据集LIDC-IDRI上分类准确率达到94.25%,AUC值达到98%。实验结果表明,加权融合多维度模型可以有效地提升肺结节分类性能。 相似文献
10.
针对肺结节特征复杂且不明显,难以精确诊断出胸片中是否含有肺结节的问题,提出将深度神经网络应用于肺结节分类识别之中。首先通过将胸片灰度一致化,减少由于不同设备导致胸片亮度与灰度的差异;其次采用不同的数据扩增方法使得深度卷积神经网络可以充分提取肺结节的特征;最后通过改进的神经网络架构对肺结节进行分类识别。提出的算法有效地避免了在对胸片图像进行分割时造成图像特征部分丢失的现象,同时克服了由于胸片图像的复杂造成的肺结节特征不明显的缺点。最终通过实验研究证明胸片肺结节分类识别的平均准确率达到84.2%,在医学胸片肺结节的分类识别领域上具有一定的应用价值。 相似文献
11.
针对军用机场大尺寸卫星图像中航空器检测识别的具体应用场景,建立了一套实时目标检测识别框架,将深度卷积神经网络应用到大尺寸图像中的航空器目标检测与识别任务中。首先,将目标检测的任务看成空间上独立的bounding-box的回归问题,用一个24层卷积神经网络模型来完成bounding-box的预测;然后,利用图像分类网络来完成目标切片的分类任务。大尺寸图像上的传统目标检测识别算法通常在时间效率上很难突破,而基于卷积神经网络的航空器目标检测识别算法充分利用了计算硬件的优势,大大缩短了任务耗时。在符合应用场景的自采数据集上进行测试,所提算法目标检测实时性达到平均每张5.765 s,在召回率65.1%的工作点上达到了79.2%的精确率,分类网络的实时性达到平均每张0.972 s,Top-1错误率为13%。所提框架在军用机场大尺寸卫星图像中航空器检测识别的具体应用问题上提出了新的解决思路,同时保证了实时性和算法精度。 相似文献
12.
针对当前基于深度学习的显著性对象检测算法不能准确保存对象边缘的区域,从而导致检测出的显著性对象边缘区域模糊、准确率不高的问题,提出了一种基于多任务深度学习模型的显著性对象检测算法。首先,基于深度卷积神经网络(CNN),训练一个多任务模型分别学习显著性对象的区域和边缘的特征;然后,利用检测到的边缘生成大量候选区域,再结合显著性区域检测的结果对候选区域进行排序和计算权值;最后提取出完整的显著性图。在三个常用标准数据集上的实验结果表明,所提方法获得了更高的准确率,其中F-measure比基于深度学习的算法平均提高了1.9%,而平均绝对误差(MAE)平均降低了12.6%。 相似文献
13.
针对U-Net分割小体积肺结节效果较差的问题,提出一种基于深度迁移学习的分割方法,利用分块式叠加微调(BSFT)策略辅助分割肺结节。首先,利用卷积神经网络学习自然图像大数据集的特征信息;然后,将所学特征迁移到进行肺结节图像小数据集分割的网络,从该网络最后一个下采样层开始逐块释放、微调训练,直到网络完成最后一层的叠加;最后,定量分析Dice相似性系数,以确定最佳分割网络。实验结果表明,BSFT在LUNA16肺结节公开数据集上的Dice值达到0.917 9,该策略的性能明显优于主流肺结节分割算法。 相似文献
14.
为了在行人检测任务中使卷积神经网络(CNN)选择出更优模型并获得定位更准确的检测框,提出一种改进的基于卷积神经网络的行人检测方法。改进主要涉及两个方面:如何决定CNN样本迭代学习次数和如何进行重合窗口的合并。首先,关于CNN样本迭代次序问题,在顺序迭代训练多个CNN分类模型的基础上,提出一种基于校验集正确率及其在迭代系列分类器中展现出的稳定性进行更优模型选择的策略,以使最终选择的分类器推广能力更优。其次,提出了一种不同于非极大值抑制(NMS)的多个精确定位回归框合并机制。精确定位回归框的获取以CNN检测过程输出的粗定位框作为输入。然后,对每个粗定位框应用CNN精确定位过程并获得对应的精确定位回归框。最后,对多个精确定位回归框进行合并,合并过程考虑了每个精确定位回归框的正确概率。更精确地说,最终的合并窗口是基于多个相关的精确定位回归框的概率加权求和方式获得。针对提出的两个改进,在国际上广泛使用的行人检测公共测试数据集ETH上进行了一系列实验。实验结果表明,所提的两个改进方法均能有效地提高系统的检测性能,在相同的测试条件下,融合两个改进的方法相比Fast R-CNN算法检测性能提升了5.06个百分点。 相似文献
15.
针对翻录语音攻击说话人识别系统,危害合法用户的权益问题,提出了一种基于卷积神经网络(CNN)的翻录语音检测算法。首先,通过提取原始语音与翻录语音的语谱图,并将其输入到卷积神经网络中,对其进行特征提取及分类;然后,搭建了适应于检测翻录语音的网络框架,分析讨论了输入不同窗移的语谱图对检测率的影响;最后,对不同偷录及回放设备的翻录语音进行了交叉实验检测,并与现有的经典算法进行了对比。实验结果表明,所提方法能够准确地判断待测语音是否为翻录语音,其识别率达到了99.26%,与静音段梅尔频率倒谱系数(MFCC)算法、信道模式噪声算法和长时窗比例因子算法相比,识别率分别提高了约26个百分点、21个百分点和0.35个百分点。 相似文献
16.
针对航母甲板面舰载机密集易遮挡,舰载机目标难以检测,且检测效果易受光照条件和目标尺度影响的问题,提出了一种改进的更快的区域卷积神经网络(Faster R-CNN)舰载机目标检测方法。该方法设计了带排斥损失策略的损失函数,并结合多尺度训练,利用实验室条件下采集的图片对深度卷积神经网络进行训练并测试。测试实验显示,相对于原始Faster R-CNN检测模型,改进后的模型对遮挡舰载机目标具有良好的检测效果,召回率提高了7个百分点,精确率提高了6个百分点。实验结果表明,所提的改进方法能够自动全面地提取舰载机目标特征,解决了遮挡舰载机目标的检测问题,检测精度和速度均能够满足实际需要,且在不同的光照条件和目标尺度下适应性强,鲁棒性较高。 相似文献
17.
针对纹身图像的特点和卷积神经网络(CNN)在全连接层对图像特征抽取能力的不足问题,提出一种三通道的卷积神经网络纹身图像检测算法,并进行了三方面的改进工作。首先,针对纹身图像的特点改进图像预处理方案;其次,设计了一个基于三通道全连接层的卷积神经网络进行特征提取,并对特征建立索引,有效地提高了网络对不同尺度下空间信息的提取能力,实现了对纹身图像的高效检测;最后,通过两个数据集验证了算法的泛化能力。实验结果表明,对NIST数据集所提预处理方案比Alex方案有总正确率提高0.17个百分点,纹身图像正确率提高0.29个百分点。在所提预处理方案下,提出的算法在标准的NIST纹身图像集上具有明显的优势,正确率从NIST公布的最优值96.3%提高到99.1%,提高了2.8个百分点;相对于传统的CNN算法,正确率从98.8%提高到99.1%,提高了0.3个百分点。在Flickr数据集上也有相应的性能提升。 相似文献
18.
针对多角度下车辆出现一定的尺度变化和形变导致很难被准确识别的问题,提出基于多尺度双线性卷积神经网络(MS-B-CNN)的车型精细识别模型。首先,对双线性卷积神经网络(B-CNN)算法进行改进,提出MS-B-CNN算法对不同卷积层的特征进行了多尺度融合,以提高特征表达能力;此外,还采用基于中心损失函数与Softmax损失函数联合学习的策略,在Softmax损失函数基础上分别对训练集每个类别在特征空间维护一个类中心,在训练过程中新增加样本时,网络会约束样本的分类中心距离,以提高多角度情况下的车型识别的能力。实验结果显示,该车型识别模型在CompCars数据集上的正确率达到了93.63%,验证了模型在多角度情况下的准确性和鲁棒性。 相似文献
19.
边缘检测是将图像中的突变的重要信息提取出来的过程,是计算机视觉领域研究热点,也是图像分割、目标检测与识别等多种中高层视觉任务的基础。近几年来,针对边缘轮廓线过粗以及检测精度不高等问题,业内提出了谱聚类、多尺度融合、跨层融合等基于深度学习的边缘检测算法。为了使更多研究者了解边缘检测的研究现状,首先,介绍了传统边缘检测的实现理论及方法;然后,总结了近年来基于深度学习的主要边缘检测方法,并依据实现技术对这些方法进行了分类,对其涉及的关键技术进行分析,发现对多尺度多层次融合与损失函数的选择是重要的研究方向。通过评价指标对各类方法进行了比较,可知边缘检测算法在伯克利大学数据集(BSDS500)上的最优数据集规模(ODS)经过多年研究从0.598提高到了0.828,接近人类视觉水平。最后,展示了边缘检测算法研究的发展方向。 相似文献