首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal-organic frameworks (MOFs) exhibiting high surface area and tunable pore size own broad application prospects. Compared with existing MOFs, MOF-5 [Zn4O(bdc)3] is a promising hydrogen storage material due to high H2 uptake capacity and thermostability. However, further wider applications of MOF-5 have been limited because atmospheric moisture levels cause MOF-5 instability. MOF-5 and multi-walled carbon nanotubes (MWCNTs) hybrid composite (denoted MOFMC) can enhance stability toward ambient moisture and improve hydrogen storage capacity. In this paper, the MOFMC, which has an interpenetrated structure with high mesoporosity, was synthesized. The MOFMC is denoted as Int-MOFMC-meso. It stored 2.02 wt% H2 at 77 K under 1 bar, which is higher than the MOF-5 with similar structure and the earlier reported MOFMC material. Moreover, the Int-MOFMC-meso can also show more excellent performance of thermostability and moisture stability than the MOF-5 with similar structure.  相似文献   

2.
The metal-organic framework MOF-5 has attracted significant attention due to its ability to store large quantities of H2 by mass, up to 10 wt.% absolute at 70 bar and 77 K. On the other hand, since MOF-5 is typically obtained as a bulk powder, it exhibits a low volumetric density and poor thermal conductivity—both of which are undesirable characteristics for a hydrogen storage material. Here we explore the extent to which powder densification can overcome these deficiencies, as well as characterize the impact of densification on crystallinity, pore volume, surface area, and crush strength. MOF-5 powder was processed into cylindrical tablets with densities up to 1.6 g/cm3 by mechanical compaction. We find that optimal hydrogen storage properties are achieved for ρ ∼ 0.5 g/cm3, yielding a 350% increase in volumetric H2 density with only a modest 15% reduction in gravimetric H2 excess in comparison to the powder. Higher densities result in larger reductions in gravimetric excess. Total pore volume and surface area decrease commensurately with the gravimetric capacity, and are linked to an incipient amorphization transformation. Nevertheless, a large fraction of MOF-5 crystallinity remains intact in densities up to 0.75 g/cm3, as confirmed from powder XRD. Predictably, the radial crush strength of the pellets is enhanced by densification, increasing by a factor of 4.3 between a density of 0.4 g/cm3 and 0.6 g/cm3. Thermal conductivity increases slightly with tablet density, but remains below the single crystal value.  相似文献   

3.
Metal-organic frameworks are new kinds of porous crystalline materials. The Zr-based metal-organic framework (MOF-801) is consists of [Zr6(u3-O)4(u3-OH)4]12+ clusters and fumaric acid connectors. MOF-801 has excellent mechanical properties, high chemical stability and high water absorption capacity. There are a large number of hydrophilic functional groups inside MOF-801, which is effective to promote interfacial compatibility between MOF-801 and polymer matrixes. In this work, the MOF-801 with structural defects was synthesized through the solvothermal method by adding excess formic acids as the regulator. These structural defects could confer MOF-801 high surface area (2476.34 m2 g?1) and promote the water absorption capacity. Moreover, structural defects could also expose more open metal sites of MOF-801, thereby increasing the Lewis acidity of MOF-801. Then, the hybrid membranes were synthesized by combining the MOF-801 with structural defects and C-SPAEKS. Dense hydrogen-bond networks formed between the MOF-801 and C-SPAEKS further promote enhance proton conductivity. At the condition of 90 °C and 100% relative humidity, the highest proton conductivity of hybrid membranes reached 0.100 S cm?1, which is similar to that of Nafion 117. Meanwhile, these hybrid membranes showed outstanding chemical and thermal stabilities. These results indicate that these hybrid membranes have potential as proton exchange membranes.  相似文献   

4.
Ruthenium oxide catalysts were prepared by a sol–gel technique and calcined at different temperatures e.g., 400 °C, 500 °C and 600 °C. The catalysts performance for the oxygen evolution reaction was studied using cyclic voltammetry and their performance in a high temperature proton exchange membrane water electrolyser (PEMWE) examined. Physio-chemical characterization was carried out to study the thermal stability, oxygen-metal bond formation, crystallinity phase and crystallite size, particle size and elemental analysis by TGA, FTIR, XRD, TEM and EDX respectively. The electrolyte used for electrochemical characterisation was 1.0 M H3PO4 and 0.5 M H2SO4. Additionally, the effect of calcination and electrolyte temperature on oxygen evolution reaction of RuO2 catalysts was studied and the apparent activation energy was determined using chronoamperometry. The prepared RuO2 were tested as anode catalyst in PEMWE in the temperature range of 120–150 °C using phosphoric acid doped polybenzimidazole membrane electrolyte. The physio-chemical and electrochemical characterization results indicate that RuO2 calcined at 500 °C gave the best performance with a current density of 0.875 A cm−2 at 1.8 V in a PEMWE operated at 150 °C.  相似文献   

5.
Combined density functional theory and grand canonical monte Carlo (GCMC) calculations were performed to study the electronic structures and hydrogen adsorption properties of the Zn-based metal-organic framework MOF-650. The benzene azulenedicarboxylate linkers of MOF-650 were substituted by B atoms, N atoms, and boronic acid B(OH)2 linkers, and the Zn atoms were substituted by Mg and Ca atoms. The calculated electronic densities of states (DOSs) of MOF-650 showed that introduction of B atoms reduces the band gap but damages the structure of MOF-650. Introduction of single N bonds cannot provide active electrons to attract H2 molecules. Thus, substitutions of B and N into MOF-650 are not suggested. B(OH)2 substitute in MOF-650 decreased its band gap, slightly improved its hydrogen storage ability and made H2 molecules more intensively distributed besides organic linkers. GCMC calculations were carried out by estimating the H2 storage amount of the pure and modified MOFs at 77 and 298 K and from 1 bar to 20 bar. B(OH)2 linker and Mg/Ca co-doped MOF-650 showed increased H2 adsorption by approximately 20 wt%. The adsorption of H2 around different bonds showed the order N–C < C = C < B–C < C–O < B–O.  相似文献   

6.
Using a deposition-reduction method, Mg/MOF nanocomposites were prepared as composites of Mg and metal-organic framework materials (MOFs = ZIF-8, ZIF-67 and MOF-74). The addition of MOFs can enhance the hydrogen storage properties of Mg. For example, within 5000 s, 0.6 wt%, 1.2 wt%, 2.7 wt%, 3.7 wt% of hydrogen were released from Mg, Mg/MOF-74, Mg/ZIF-8, Mg/ZIF-67, respectively. Activation energy values of 198.9 kJ mol−1 H2, 161.7 kJ mol−1 H2, 192.1 kJ mol−1 H2 were determined for the Mg/ZIF-8, Mg/ZIF-67, Mg/MOF-74 hydrides, which are 6 kJ mol−1 H2, 43.2 kJ mol−1 H2, and 12.8 kJ mol−1 H2 lower than that of Mg hydride, respectively. Moreover, the cyclic stability characterizing Mg hydride was significantly improved when adding ZIF-67. The hydrogen storage capacity of the Mg/ZIF-67 nanocomposite remained unchanged, even after 100 cycles of hydrogenation/dehydrogenation. This excellent cyclic stability may have resulted from the core-shell structure of the Mg/ZIF-67 nanocomposite.  相似文献   

7.
The metal-organic framework Zn4O (BDC)3 (BDC = 1,4-bezene dicarboxlate), also known as MOF-5, has demonstrated considerable adsorption of hydrogen, up to 7 excess wt.% at 77 K. Consequently, it has attracted significant attention for vehicular hydrogen storage applications. To improve the volumetric hydrogen density and thermal conductivity of MOF-5, prior studies have examined the hydrogen storage capacities of dense MOF-5 pellets and the impact of thermally conductive additives such as expanded natural graphite (ENG). However, the performance of a storage system based on densified MOF-5 powders will also hinge upon the rate of hydrogen mass transport through the storage medium. In this study, we further characterize MOF-5 compacts by measuring their hydrogen transport properties as a function of pellet density (ρ = 0.3–0.5 g cm−3) and the presence/absence of ENG additions. More specifically, the Darcy permeability and diffusivity of hydrogen in pellets of neat MOF-5, and composite pellets consisting of MOF-5 with 5 and 10 wt.% ENG additions, have been measured at ambient (296 K) and liquid nitrogen (77 K) temperatures. The experimental data suggest that the H2 transport in densified MOF-5 is strongly related to the MOF-5 pellet density ρ.  相似文献   

8.
In this work high quality cobalt oxide silica membranes were synthesized on alumina supports using a sol–gel, dip coating method. The membranes were subsequently connected into a steel module using a graphite based proprietary sealing method. The sealed membranes were tested for single gas permeance of He, H2, N2 and CO2 at temperatures up to 600 °C and feed pressures up to 600 kPa. Pressure tests confirmed that the sealing system was effective as no gas leaks were observed during testing. A H2 permeance of 1.9 × 10−7 mol m−2 s−1 Pa−1 was measured in conjunction with a H2/CO2 permselectivity of more than 1500, suggesting that the membranes had a very narrow pore size distribution and an average pore diameter of approximately 3 Å. The high temperature testing demonstrated that the incorporation of cobalt oxide into the silica matrix produced a structure with a higher thermal stability, able to resist thermally induced densification up to at least 600 °C. Furthermore, the membranes were tested for H2/CO2 binary feed mixtures between 400 and 600 °C. At these conditions, the reverse of the water gas shift reaction occurred, inadvertently generating CO and water which increased as a function of CO2 feed concentration. The purity of H2 in the permeate stream significantly decreased for CO2 feed concentrations in excess of 50 vol%. However, the gas mixtures (H2, CO2, CO and water) had a more profound effect on the H2 permeate flow rates which significantly decreased, almost exponentially as the CO2 feed concentration increased.  相似文献   

9.
The effect of light metal ion decoration of the organic linker in metal-organic framework MOF-5 on its hydrogen adsorption with respect to its hydrogen binding energy (ΔB.E.) and gravimetric storage capacity is examined theoretically by employing models of the form MC6H6:nH2 where M = Li+, Na+, Be2+, Mg2+, and Al3+. A systematic investigation of the suitability of DFT functionals for studying such systems is also carried out. Our results show that the interaction energy (ΔE) of the metal ion M with the benzene ring, ΔB.E., and charge transfer (Qtrans) from the metal to benzene ring exhibit the same increasing order: Na+ < Li+ < Mg2+ < Be2+ < Al3+. Organic linker decoration with the above metal ions strengthened H2-MOF-5 interactions relative to its pure state. However, amongst these ions only Mg2+ ion resulted in ΔB.E. magnitudes that were optimal for allowing room temperature hydrogen storage applications of MOF-5. A much higher gravimetric storage capacity (6.15 wt.% H2) is also predicted for Mg2+-decorated MOF-5 as compared to both pure MOF-5 and Li+-decorated MOF-5.  相似文献   

10.
The energy-storage capacity of reduced graphene oxide (rGO) is investigated in this study. The rGO used here was prepared by thermal annealing under a nitrogen atmosphere at various temperatures (300, 400, 500 and 600 °C). We measured high-pressure H2 isotherms at 77 K and the electrochemical performance of four rGO samples as anode materials in Li-ion batteries (LIBs). A maximum H2 storage capacity of ∼5.0 wt% and a reversible charge/discharge capacity of 1220 mAh/g at a current density of 30 mA/g were achieved with rGO annealed at 400 °C with a pore size of approximately 6.7 Å. Thus, an optimal pore size exists for hydrogen and lithium storage, which is similar to the optimum interlayer distance (6.5 Å) of graphene oxide for hydrogen storage applications.  相似文献   

11.
In this study, three thermally labile additives microcrystalline cellulose (MCC), nanocrystalline cellulose (NCC), and polyvinylpyrrolidone (PVP) were introduced to the P84-copolyimide (PI) solution. PI-based carbon tubular membranes were fabricated using dip-coating method, followed by sample characterizations in order to determine their structural morphologies, thermal stability and gas permeation performance. NCC was added as the membrane pore former for the hydrogen gas (H2) separation. While tests involving pure H2 and N2 permeation were carried out at room temperature, carbon membranes were carbonized at a final temperature of 800 °C, with the heating rate of 3 °C/min under the Ar flow. Excellent result of H2/N2 selectivity was obtained with value of 430.06 ± 4.16. Addition of NCC has significantly increased the number of pore channels in the membrane, hence, contributing to high gas permeance and selectivity. NCC has shown potential as a good additive for an enhanced hydrogen separation performance.  相似文献   

12.
Nickel (Ni) nanoparticles were synthesized in micropores of zeolite by the adsorption and decomposition of a sublimated Ni organometallic compound, Ni(C5H5)2, to invent metallic catalysts with nanosize, which are smaller than 5 nm and keep the nanosize at high temperature. In the decomposition process, Ni species were partially decomposed by ultraviolet light irradiation and fixed in zeolite pores prior to thermal reduction under H2 flow. Note that the Ni nanoparticles showed an excellent thermal stability, because they kept the high dispersion with diameters smaller than 5 nm even after heating at 400 °C. On the other hand, the Ni particles supported on zeolite by a conventional method, which is an incipient wetness impregnation process, became larger than 10 nm after heating at the same temperature. The synthesized Ni nanoparticles acted as a metallic catalyst because they showed higher selectivity for H2 generation than C2H4 generation during ethanol steam reforming reaction.  相似文献   

13.
In this study, eleven alkaline earth metal and B2O3-free SiO2–Al2O3–Y2O3–ZnO glass sealants were prepared. The thermal stability, adhesion, and sealing properties of the glass systems with respect to SUS430 stainless steel (SUS430) were assessed for use in intermediate temperature solid oxide fuel cells (ITSOFCs). The glass transition points fell in the range of 694 °C and 833 °C, while the glass softening points, varying from 725 °C to 885 °C, decreased linearly with the ZnO/SiO2 ratio. Among the glasses evaluated, the YAS1-50, YAS4-50, YAS5-50, and YAS5-90 glasses coupled with SUS430 showed fine adhesion and no detectable inter-diffusion across the interface. The coefficient of thermal expansion (CTE) of the YAS5-50 glass escalated from 7.01 to 9.30 × 10−6/K with 50 wt% Bi1.5Y0.5O3 (BYO) fillers. The leak rates of the composite seals comprising the YAS5-50 glass and 50 wt% BYO fillers were measured at 700 °C after joining at 850 °C. The measurement used helium with a pressure at 1 psi across the glass seals and a slight load of 1.0 psi to minimize compressive seal effect on the glass. It appeared that a low leak rate of 0.052 sccm/cm was obtained and stayed unchanged as the system was soaked at 700 °C for 500 h, indicating a fine thermal stability against the extended duration benefited from the limited crystallization of the YAS5-50 glass. This promising long-term stability qualified the glass for use as SOFC seal.  相似文献   

14.
Ceria-based composites (50 vol% of the ceramic phase) including one mixture of Li and Na carbonates (1:1 molar ratio), were prepared using either pure ceria (modest conductor) or Gd-doped ceria (excellent oxide–ion conductor) as ceramic matrix. These materials were aged for periods of up to 1000 h at 550 °C, under pure CO2, in air and in H2 diluted in N2, to test their stability and electrical performance. Impedance spectroscopy measurements performed between 300 and 600 °C were complemented by structural and microstructural characterization. The excellent long-term stability in CO2 drops slightly when moving to air and in a pronounced manner when moving to diluted H2. In all cases and in all conditions the best performance is observed for pure ceria-based composites. Electrode (Au) and electrolyte degradation were found interrelated.  相似文献   

15.
We report on an easy synthesis method for the preparation of a hybrid composite of Pt-loaded MWCNTs@MOF-5 [Zn4O(benzene-1,4-dicarboxylate)3] that greatly enhanced hydrogen storage capacity at room temperature. To prepare the composite, we first prepared Pt-loaded MWCNTs, which were then incorporated in-situ into the MOF-5 crystals. The obtained composite was characterized by various techniques such as powder X-ray diffractometry, optical microscopy, porosimetry by nitrogen adsorption, and hydrogen adsorption. The analyses confirmed that the product has a highly crystalline structure with a Langmuir specific surface area of over 2000 m2/g. The hybrid composite was shown to have a hydrogen storage capacity of 1.25 wt% at room temperature and 100 bar, and 1.89 wt% at cryogenic temperature and 1 bar. These H2 storage capacities represent significant increases over those of virgin MOF-5s and Pt-loaded MWCNTs.  相似文献   

16.
This paper aimed to study the effects of fullerene (C60) impregnation on the isoreticular metal-organic framework (IRMOF) materials MOF-650 (ZnO4 nodes were connected to azulenedicarboxylate linkers), MOF-5(ZnO4 nodes were connected to benzenedicarboxylate linkers), and IRMOF-10 (ZnO4 nodes were connected to biphenyldicarboxylate linkers) for H2 storage, these IRMOFs had similar structures but different pore volumes and organic linkers. Density functional theory (DFT) and grand canonical monte Carlo (GCMC) calculations indicated that C60 plays an important role in balancing the gravimetric and volumetric H2 densities of the IRMOFs. The C60@IRMOFs revealed improved volumetric density when H2 was undersaturated but reduced gravimetric density under H2 saturation. The saturated gravimetric H2 density of the IRMOFs was decided by the free volume. At 77 K, C60@MOF-650 had a gravimetric H2 density of 5.3 wt% and volumetric H2 density of 42 g/L under 10 bar, and C60@IRMOF-10 had a gravimetric H2 density of 7.4 wt% and volumetric H2 density of 43 g/L under 18 bar. These values nearly meet the United States Department of Energy (DOE) gravimetric and volumetric H2 density ultimate targets (gravimetric H2 density, 6.5 wt%; volumetric H2 density, 50  g/L) under ambient pressures. Among the studied IRMOFs, C60@MOF-650 and C60@IRMOF-10 demonstrated the best H2 storage properties at 233 and 298 K.  相似文献   

17.
High- and low- temperature behaviors of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathode for solid oxide fuel cells operating under CO2/H2O-containing atmosphere are investigated. LSCF shows different stability against CO2 and H2O at high and low temperature. LSCF has excellent electrochemical performance and high stability against the corrosion of CO2 and H2O at 750 °C due to weak reactivity of LSCF with CO2. LSCF shows a serious degradation at 600 °C under operation with O2–CO2(2.83%)–H2O(2.64%), which is ascribed to the impeded oxygen activation and oxygen surface diffusion by surface carbonates and SrCO3 phases on LSCF surface. Under CO2(5%)–H2O(2.81%)–He, LSCF reacts with CO2 to yield SrCO3 phases in 400–680 °C, and H2O aggravates the chemical reaction between CO2 and LSCF. Taking into account of SrCO3 phase formation on LSCF, LSCF cathode is stable under operation with O2–CO2(2.83%)–H2O(2.64%) in 680–800 °C, whereas it is unstable below 680 °C. LSCF can be subject to degradation caused by CO2 and H2O in air during long-term operation below 680 °C.  相似文献   

18.
The H2 storage properties of isoreticular metal-organic framework materials (IRMOFs), MOF-5 and IRMOF-10, impregnated with different numbers and types of heterogeneous C48B12 molecules were investigated using density functional theory and grand canonical Monte Carlo (GCMC) calculations. The excess hydrogen adsorption isotherms of IRMOFs at 77 K within 20 bar indicate that suitable number and type of C48B12 molecules play a crucial role in improving the H2 storage properties of IRMOFs. Among the studied pure and nC48B12 (n = 1, 2, 4, 8) in Ci symmetry impregnating into MOF-5, at 77 K under 6 bar, MOF-5-4C48B12 with a 3.5 wt% and 29.9 g/L hydrogen storage density, and at 77 K under 12 bar, the pure MOF-5 with a 4.9 wt% and 31.0 g/L hydrogen storage density has the best hydrogen storage properties. Whereas, among the studied pure and nC48B12 (n = 1, 2, 4, 8) in S6 symmetry impregnating into IRMOF-10, IRMOF-10-8C48B12 always shows the best hydrogen storage properties among the pure and C48B12-impregnated IRMOF-10 at 77 K within 20 bar. IRMOF-10-8C48B12 has a 6.0 wt% and 34.6 g/L hydrogen storage density at 77 K under 6 bar, and has a 7.1 wt% and 41.4 g/L hydrogen storage density at 77 K under 12 bar. The confinement effect of IRMOFs on C48B12 molecules, and steric hindrance effect of C48B12 molecules on IRMOFs mainly affects the H2 uptake capacity by comparing the absolute H2 molecules in individual IRMOFs units, C48B12 molecules, and IRMOFs-nC48B12 compounds. The absolute hydrogen adsorption profiles show that eight C48B12 molecules impregnating into MOF-5 can exert obvious steric effects for H2 adsorption. The saturated gravimetric and volumetric H2 densities of IRMOF-10-8C48B12 higher than those of MOF-5-8C48B12 due to with larger free volume.  相似文献   

19.
Hydrogen electrode-supported tubular solid oxide cells (SOCs) were fabricated by dip-coating and co-sintering method. The electrochemical properties of tubular SOCs were investigated both in fuel cell and electrolysis modes. Ni-YSZ was employed as hydrogen electrode support. The pore ratio of Ni-YSZ support strongly affected the performance of tubular SOCs, especially in steam electrolysis mode. The pore ratio was adjusted by the content of pore-former in support slurry. The results showed that 3 wt.% pore former content is the proper value to produce high performance both in fuel cell and electrolysis modes. In fuel cell mode, the maximum power density reached 743.1 mW cm−2 with H2 (105 sccm) and O2 (70 sccm) as working gases at 850 °C. In electrolysis mode, as the electrolysis voltage was 1.3 V, the electrolysis current density reached 425 mA cm−2 with H2 (35 sccm) and N2 (70 sccm) adsorbed 47% steam as working gases in hydrogen electrode at 850 °C. The stability of tubular SOCs was related to the ratio of NiO/YSZ in the support. The sample with NiO/YSZ = 60/40 shows a better performance than the sample with NiO/YSZ = 50/50.  相似文献   

20.
Sealing is an ongoing concern for the development of pSOFC and pSOEC systems, mainly because gas tightness largely drives performance and is a critical key to develop these technologies. The main difficulties are due to the fact that gas tightness must be achieved at high temperature (≈800 °C) between metal/metal components, brittle ceramic/ceramic materials or combination of both. To tackle this question, we report on compliant glassy seals, which represent an interesting alternative to rigid seals. Indeed, their thermal properties, especially a suitable thermoplasticity, enable to prevent damages that occur during thermal cycling due to an intrinsic self-healing effect. In this context, a series of compliant sealing glasses based on K2O–Na2O–La2O3–B2O3–ZrO2–SiO2 system has been developed. These glasses have suitable viscosities around bonding (107.6 dPa·s at 900 °C) and operating temperature (106 dPa·s at 800 °C). They show also high resistance to crystallization and low interactions with the other cell components in spite of the low thermal characteristics. However, the viscosity has a great influence on the glass stability. This correlation has been investigated to get interesting compromise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号