首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerium-doped yttrium aluminum garnet (Y3Al5O12:Ce, YAG:Ce) was prepared using a sol-gel method and then fired for CO2 laser post-treatments. Phase transformations and formation of impurities were not observed in YAG:Ce after CO2 laser sintering. The shift of the diffraction peak and the appearance of another Raman peak indicate a more homogeneous distribution of Ce activators and enhanced crystallinity in laser-sintered YAG hosts. Larger spheres (100–200 μm) with tiny crystallites (<10 μm) were observed on the smoother surface in the laser-sintered YAG:Ce, unlike the irregular, porous, and layered powders in the sol-gel-derived YAG:Ce (1–100 μm). Photoluminescence (PL) measurements revealed an emission increase of 180% and a red shift of the emission peak for the laser-sintered YAG:Ce powders compared with the sol-gel-derived powders. Both have comparable thermal PL quenching behavior; however, the YAG:Ce powders with CO2 laser treatment exhibited a PL efficiency improvement of approximately 4%.  相似文献   

2.
Highly crystalline nanosized barium ferrite (BaFe12O19) powders were prepared by spray pyrolysis from a spray solution containing a high concentration of the metal components. The precursor powders obtained from the spray solution containing citric acid were amorphous with a porous and hollow structure. Purely crystalline and fine BaFe12O19 powders were obtained after post-treatment between 700 and 1000 °C and subsequent mechanical grinding in an agate mortar. The mean sizes of the powders post-treated at 700 and 1000 °C were 125 and 550 nm, respectively. The specific magnetization of the powders prepared from the spray solution containing citric acid was 57 emu/g.  相似文献   

3.
BaNd2Ti5O14 powders were directly prepared by high-temperature spray pyrolysis. The powders prepared at temperatures of 1300 and 1500 °C exhibited a pure BaNd2Ti5O14 phase. The powders prepared at 1300 °C were spherical in shape. However, the powders prepared at 1500 °C showed non-spherical shapes. The BaNd2Ti5O14 powders had a composition similar to that of the spray solution. The mean sizes of the BaNd2Ti5O14 powders increased from 0.23 to 0.60 μm when the concentration of the spray solution was increased from 0.01 to 0.2 M. At a sintering temperature of 1100 °C, bridge-like structures were formed between the powders. Pellets sintered at 1300 °C exhibited a dense structure comprising rod-like crystals.  相似文献   

4.
A simple, one-step, and fast method based on exothermic reactions is described for synthesis of Tb3Al5O12:Ce phosphor. Light-emitting diodes (LEDs) were fabricated by depositing this phosphor on a blue chip. Photoluminescence and LED emission are compared with respective results for well-known YAG:Ce phosphor. A significant improvement in color rendering index (CRI) attributed to the red shift of Ce3+ emission was observed. Persistent emission is also reported for the first time in the Tb3Al5O12:Ce annealed in reducing atmosphere. It well correlates with Ce3+ emission and a peak around 80°C in the thermoluminescence glow. The long-lasting emission was associated with host-related electron traps.  相似文献   

5.
Powders of BaZr0.9Y0.1O3?δ (BZY10) were synthesised by spray pyrolysis from nitrate salt solutions for the first time. Differences in the powders produced were explored when the concentration of solution, atomisation frequency, aerosol flow rate and furnace temperature were varied. X-ray powder diffraction (XRD) was used to determine that powders produced using a furnace temperature of 800 °C were of single phase. Powder that was produced using a higher atomisation frequency and a lower salt solution concentration resulted in a favourable particle size distribution and morphology for sintering. A density of approximately 91% of the theoretical density (TD) was achieved by sintering at 1500 °C for 1 h in flowing air, significantly higher than is achieved with commercial BZY10 powders using these conditions. This constitutes a significant lowering of the sintering temperature of this oxide.  相似文献   

6.
《Ceramics International》2021,47(21):30147-30155
Yttrium aluminum garnet (Y3Al5O12, YAG) is an important functional material. However, the strict and complicated preparation has limited its wide application. This study aimed to rapidly synthesize Y3Al5O12 by plasma electrolysis for the first time. The prepared powder was studied from topography, structure and elements by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The powder had a good crystal form with a spherical shape. The single kind of diffraction peak of Y3Al5O12 in XRD revealed the high purity of the synthesized powders. The study of the relationship between the applied voltage and the synthesized powder revealed a threshold voltage of 210 V under the present condition. The higher voltage led to the damage of the electrode due to excessive heat. The synthesis of the YAG powder had a melt-quench process. The two processes were carried out at the same time.  相似文献   

7.
To exploit the potential applications of thermal neutron detection, yttrium aluminum garnet co‐doped with 1 mol% Ce3+ and 5 mol% Li+ was vacuum sintered into a transparent ceramic through solid‐state reaction. The transmittance of a 2 mm thick sample was measured to be as high as 80.3% in the visible range and the microstructural characterization indicated that Li ions could also act as a sintering aid. Excitation and emission spectra data further supported the assumption that the Li ions have substituted into the garnet lattice. Excitation and emission spectra data of the prepared ceramic were also obtained for use in the characterization of optical properties.  相似文献   

8.
We report a study of composite scintillating ceramics based on coupled layers of two different garnets, namely Ce-doped gadolinium gallium aluminium (GGAG:Ce) and Pr-doped yttrium aluminium (YAG:Pr), fabricated by hot isostatic pressing. Two samples were prepared, with different GGAG:Ce layer thickness, 120 µm and 690 µm respectively, but with a comparable overall thickness of 1.4 mm. The key finding is that the material architecture strongly determines the scintillation response. The radioluminescence is that expected from the irradiated material when a thick layer of ceramic is exposed to X-rays. Conversely, exposing a thin layer allows a non-null probability —about 0.3% for 120 µm of GGAG— of finding an X-ray photon in the underlying layer, and thus radioluminescence from both materials is recorded. We believe these results can extend the potential of layered optical ceramics for advanced devices, such as energy- and direction-sensitive X-ray detectors.  相似文献   

9.
本研究采用较温和的高温固相法,用碱土金属离子Sr2+和Ba2+取代Y3+离子进行基质取代,合成了一系列(Y0.98-xSr)3Al5O12:Ce0.06和(Y0.98-xBax)3Al5O12:Ce0.06荧光粉.运用XRD对荧光粉进行了表征,试验结果表明:在一定的掺杂取代范围内,这些体系具有立方石榴石结构.运用荧光光...  相似文献   

10.
Fine-sized BaMgAl10O17:Eu2+ phosphor powders with plate-like morphology were prepared by spray pyrolysis process. The effects of ratio of BaF2 and Ba(NO3)2 used as the source materials of Ba component on the morphological and optical properties of the BaMgAl10O17:Eu2+ phosphor powders were investigated. BaF2 was used as the flux material as well as the source material of Ba component. The phosphor powders prepared from the spray solution with the same mole concentrations of BaF2 and Ba(NO3)2 had fine size, plate-like morphology and narrow size distribution. The addition of BaF2 as the source material of Ba component increased the photoluminescence intensities of the phosphor powders. The phosphor powders prepared from the spray solution with the ratios of BaF2 and Ba(NO3)2 larger than 1 had the similar photoluminescence intensities to that of the commercial product.  相似文献   

11.
Pure and Ag-doped BaTiO3 nanopowders were prepared by spray pyrolysis. Precursor powders, prepared from a spray solution with citric acid and ethylenediaminetetraacetic acid (EDTA) as chelating agents, had large, hollow particles irrespective of Ag doping. Both pure and Ag-doped powders had partially aggregated particles after post-treatment at 900 °C that could be easily milled to nanoparticles. The mean sizes of the pure and Ag-doped BaTiO3 particles were 75 and 91 nm, respectively. The Ag-doped particles were mainly of cubic BaTiO3 crystal structure, with small Ag phases observed. High-density BaTiO3 pellets were formed by sintering the powders at the low temperature of 1000 °C. The silver was uniformly distributed in a tetragonal BaTiO3 phase without phase separation in the doped pellet. The dielectric constants of the pellets formed from the pure and Ag-doped BaTiO3 powders were 1826 and 2400, respectively.  相似文献   

12.
Al2O3/Y3Al5O12(YAG) directionally solidified eutectic (DSE) crystal was prepared by optical floating zone technique. Al2O3/YAG DSE consists of continuous entangled Al2O3 and the YAG forming a three-dimensional networks structure. The volume fraction of porosity is ultra-low (0.013%) and the average equivalent diameters of most pores (>84%) are smaller than 4?μm. The Al2O3/YAG DSE shows excellent high-temperature elastic stiffness. The Young’s modulus at 1500?°C maintains more than 85% of the value at room temperature. Bending strength exhibits excellent retention up to high temperature as well. High-temperature ball indentation testing shows plastic deformation involving dislocations and twinning, which predominantly occur in Al2O3 phase, while the YAG phase is stable. Evaluation on Hv/E index predicts Al2O3/YAG DSE with moderate capability to accommodate damages. Our results highlight Al2O3/YAG DSE as excellent high-temperature structural materials.  相似文献   

13.
Spherical shape, submicron, and non-aggregated bismuth-based glass powders were prepared. Glass powders with low glass transition temperature melted the silver powders at firing temperatures of as low as 400 °C. After firing at 400 °C, the specific resistances of the silver conducting films obtained from glass powders with glass transition temperatures of 498 and 373 °C were 21.6 and 5.8 μΩ cm, respectively. After firing at 450 and 500 °C, the specific resistances of the silver conducting films obtained from glass powders with glass transition temperature of 425 °C were the lowest, i.e., 3.0 and 3.1 μΩ cm, respectively.  相似文献   

14.
Ce3+ doped Lu3Al5O12 (Ce:LuAG) ceramics were fabricated by the solid-state reaction method through spark plasma sintering (SPS) from 1350 °C to 1700 °C for 5 min at a pressure of 50 MPa using micro powders. The average grain size of the SPSed ceramics gradually grew from 0.42 µm (1400 °C) to 1.55 µm (1700 °C), which is nearly one order of magnitude lower than that of vacuum sintered (VSed) Ce:LuAG ceramics (~24.6 µm). Characteristic Ce3+ emission peaking at around 510 nm appeared and 92% photoluminescence intensity of room temperature can be reserved at 200 °C revealing excellent thermal stability. The maximum radioluminescence intensity reached around 3 times of VSed Ce:LuAG ceramics and 7.8 times of BGO crystals. The maximum scintillation light yield under γ-ray (137Cs) excitation reached 9634 pho/MeV @ 2 μs. It is concluded that SPS technology is a feasible way to develop Ce:LuAG ceramics and further optical enhancement can be expected.  相似文献   

15.
选用卤化物LiCl、NaCl、KCl和SrCl2等作为助熔剂,合成了一系列YAG∶Ce粉体,并研究了助熔剂对YAG∶Ce荧光粉晶相、形貌和发光性能的影响.结果表明适量助熔剂有利于YAG∶Ce荧光粉的晶化,合成的荧光粉具有石榴石的结构,规则的形貌和窄的粒度分布.添加适量助熔剂可以提高YAG∶Ce荧光粉的发光强度.最适宜的添加量分别是:LiCl 10%,NaCl 7%,KCl 7%,SrCl,4%.  相似文献   

16.
《Ceramics International》2023,49(15):24703-24711
Ce/Mn/Cr: Y3Al5O12 transparent ceramics with a pure garnet structure and a high color rendering index were prepared by a solid-state reaction method. Mn2+ and Cr3+ enhance the emission between 500 and 700 nm and expand the conventional Ce: YAG phosphors spectrum. The Ce3+ can work both, as activators and sensitizers, and the intense energy transfer from Ce3+ to Mn2+/Cr3+ is realized through the non-radiative and radiative processes. In the sample with the optimized doping concentration the high color rendering index (CRI) value of 75.3 can be achieved under a 450 nm laser diode excitation. The chromaticity coordinates can be tuned from (0.3125, 0.3232) to (0.2917,0.2851) by varying the doping concentration. With the increasing Mn2+/Cr3+ doping concentration, the lifetime of Ce3+, quantum efficiency and luminous efficiency are all gradually decreased. This work effectively offers a scheme for realizing the high color rendering performance of phosphor-converted transparent ceramics in white LEDs/LDs.  相似文献   

17.
Size-controlled spherical silver-glass composite powders were directly prepared by using spray pyrolysis. The mean sizes of the composite powders changed from 0.34 to 0.78 μm when the concentration of the spray solution was changed from 0.05 to 2 M. The firing characteristics of composite powders formed from the spray solutions with a glass content equal to 3 wt.% of the silver component were affected by the mean sizes of the powders. Silver-conducting films formed from large-sized composite powders had a denser structure than those formed from small-sized composite powders. Further, silver-conducting films formed from composite powders with a mean size of 0.78 μm had specific resistances of 3 and 2 μΩ cm at firing temperatures of 450 and 500 °C. However, silver-conducting films formed from composite powders with a mean size of 0.34 μm had specific resistances of 8.2 and 6.9 μΩ cm at firing temperatures of 450 and 500 °C.  相似文献   

18.
A kind of Dy-doped yttrium aluminum garnet (YAG) transparent ceramic for ultraviolet excited single-phase white light-emitting phosphor was investigated, which has high-quantum efficiency (45%). The temperature field of Dy:YAG transparent ceramic was calculated by steady-state thermal simulation. Moreover, by combining with 365 nm light-emitting diodes (LED) chip directly, the Commission Internationale de l’Éclairage coordinate (x = 0.33, y = 0.35) is close to the standard equal energy white light illumination. The Dy:YAG transparent ceramic, possessing of good optical and thermal properties, is promising for applications in high-power LEDs devices.  相似文献   

19.
Layered composite ceramics have wide application in solid-state lasers. However, the photothermal effect in the layered ceramics has not been clarified, due to the interface effect between layers. In this work, the model of photon propagation and thermal distribution in the Gd3Al3Ga2O12:Ce3+/Y3Al5O12:Cr3+ layered ceramics are established. The property of photon absorption, reflection, transmission, and thermal distribution are studied by combining the Monte Carlo method and the convolution method. It is found that the photon absorption distribution and thermal distribution of this layered ceramics show the gradient change. Furthermore, this change is strongly dependent on the type, beam width, and power of laser. The temperature of layered ceramics induced by Gaussian beam is higher than that induced by flat circular beam. This work provides a useful research method for the design of layered ceramic materials with excellent scintillation performance.  相似文献   

20.
Nano-sized Ba0.7Sr0.3TiO3 powders are prepared by post-treatment of the precursor powders with hollow and thin wall structure at temperatures between 900 and 1100 °C. Ethylenediaminetetraacetic acid and citric acid improve the hollowness of the precursor powders prepared by spray pyrolysis. The mean sizes of the powders post-treated at temperatures of 900, 1000 and 1100 °C are 42, 51 and 66 nm, respectively. The densities of the Ba0.7Sr0.3TiO3 pellets obtained from the powders post-treated at 900, 1000 and 1100 °C are each 5.36, 5.55 and 5.38 g cm?3 at a sintering temperature of 1300 °C. The pellet obtained from the powders post-treated at 1000 °C has higher maximum dielectric constant than those obtained from the powders post-treated at 900 and 1100 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号