首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为了研究新型纤维增强镁合金混杂层合板在低速冲击下的力学响应,分别对由玻璃纤维、碳纤维和二者混杂增强的AZ31B镁合金层合板在不同冲击能量下的落锤低速冲击试验进行了数值模拟。基于镁合金各向异性塑性本构和指数关系界面脱粘内聚力本构模型,同时纤维复合材料层采用三维Hashin失效准则且引入刚度折减,编写了复合材料层板损伤的VUMAT子程序,并将该子程序嵌入ABAQUS/Explicit中实现对层合板冲击过程的模拟。研究了该纤维层合板在不同冲击能量下的动态冲击响应以及脱粘与损伤演化规律,分析了冲击载荷、形变和能量吸收随时间的变化规律。模拟结果表明:在冲击能较小时,首先在冲击背面出现基体开裂,随着冲击能的增加,层合板受冲击面出现由无明显损伤到出现基体开裂和纤维断裂的现象;与单一碳纤维增强的镁合金层合板复合材料相比,单一玻璃纤维增强的镁合金层合板在冲击载荷作用时能够吸收更多的能量,碳纤维层内混杂合适的玻璃纤维铺层能够提高碳纤维增强镁合金层合板的抗冲击性能。  相似文献   

2.
针对传统内聚力损伤模型(CZM)无法考虑层内裂纹对界面分层影响的缺点,提出了一种改进的适用于复合材料层合板低速冲击损伤模拟的CZM。通过对界面单元内聚力本构模型中的损伤起始准则进行修正,考虑了界面层相邻铺层内基体、纤维的损伤状态及应力分布对层间强度和分层扩展的影响。基于ABAQUS用户子程序VUMAT,结合本文模型及层合板失效判据,建立了模拟复合材料层合板在低速冲击作用下的渐进损伤过程的有限元模型,计算了不同铺层角度和材料属性的层合板在低速冲击作用下的损伤状态。通过数值模拟与试验结果的对比,验证了本文方法的精度及合理性。  相似文献   

3.
碳纤维/环氧树脂基复合材料层合板在航天、汽车等领域应用广泛,使用中难免遇到低速冲击事件(生产使用过程中工具坠落等)产生安全隐患,分层破坏是其受到低速冲击后的主要损伤形式,会严重影响复合材料层合板的强度和使用寿命。为提高其抗冲击性能,通过短纤维增韧的方式探究超高分子量聚乙烯短纤维的铺层数量和铺层位置对复合材料层合板低速冲击性能的影响。研究结果表明:添加6层短纤维的复合材料层合板最大载荷由3.19 kN增加到4.86 kN,吸收能量由18.27 J增加到28.89 J,分别提高了52.3%和58.12%。冲击后剩余强度明显提高,两层短纤维铺层增韧方式的复合材料层合板冲击后剩余强度最大,为164.73 MPa,相比原样提高95%。超高分子量聚乙烯短纤维加入后复合材料层合板的冲击损伤阻抗提高,冲击后的凹痕深度下降,并且抗分层能力提升。其增韧机制是断裂面表面能增加,冲击使部分纤维被拔出,出现纤维桥联现象,拔出的纤维会降低分层前沿的应力集中,增大分层扩展的阻力,使分层破坏在扩展过程中需要消耗更多的能量,有效阻碍了裂纹的传播。  相似文献   

4.
复合材料层合板低速冲击逐渐累积损伤预测方法   总被引:7,自引:0,他引:7  
针对复合材料层板在冲击载荷下,各种损伤的产生和扩展是一个随载荷、时间和空间而演变的过程,发展了复合材料层合板低速冲击逐渐累积损伤预测方法.采用刚度退化技术和改进的Chang-Chang失效准则、显式有限元法来模拟复合材料层合板受到低速冲击下逐渐损伤过程.使用所发展的方法分析了[0m/90n/0m]铺层的复合材料层合板在低速冲击过程中的逐渐损伤扩展,结果表明本文的方法能较好地模拟复合材料层板在低速冲击下的损伤扩展及变形过程,计算结果与实验结果吻合较好;对不同冲击能量下层合板损伤扩展研究表明,冲击能量与分层损伤面积成线性关系.  相似文献   

5.
低速冲击作用下碳纤维复合材料铺层板的损伤分析   总被引:11,自引:4,他引:7       下载免费PDF全文
建立了一个有效计算模型, 以分析碳纤维复合材料层合板在低速冲击作用下的层内和层间失效行为。针对铺层板的层内损伤, 在基于应变描述的Hashin 失效准则的基础上, 建立了单层板的逐渐累积损伤分析模型;针对铺层板的脱层损伤, 建立了各向同性脱层损伤模型, 通过结合传统的应力失效准则和断裂力学中的能量释放率准则定义了界面损伤演化规律, 并在潜在产生脱层的区域模拟为粘结接触, 并将脱层损伤模型作为界面的接触行为。该计算模型通过商用有限元软件ABAQUS/ Explicit 的用户子程序实现。使用该计算模型对碳纤维增强环氧树脂复合材料层合板在横向低速冲击作用下的损伤和变形行为进行预测分析。数值仿真的结果与试验结果进行了比较, 取得了满意的结果, 验证了该模型的正确性。   相似文献   

6.
基于微观力学失效(MMF)理论对碳纤维增强复合材料(CFRP)多向层合板在低速冲击载荷下失效机制及损伤过程进行分析和预测。建立基于MMF理论的层合板结构冲击损伤行为分析方法。首先, 使用MMF理论对冲击过程中组分的失效类别进行判别; 然后, 根据组分失效的类别制定出相应的材料性能退化方案来实现对复合材料在低速冲击下的逐步失效分析;在ABAQUS平台上开发了基于显示分析的用户材料子程序(VUMAT), 即基于MMF理论的层合板冲击损伤分析程序;最后, 利用MMF理论冲击损伤行为分析方法, 对UTS50/E51碳纤维增强复合材料多向层合板在小能量低速冲击情况下的失效机制和损伤形貌进行预测, 并将预测结果与试验结果进行对比, 分析了利用MMF理论预测冲击损伤这一方法的准确性。结果表明理论预测的凹坑直径与试验测试的凹坑直径误差为4.8%, 预测的失效机制和损伤形貌与实际观察的一致。   相似文献   

7.
崔海坡  张梦雪  张阿龙 《材料导报》2017,31(18):150-154
基于三维逐渐损伤理论和有限元法,对碳纤维复合材料假脚在冲击载荷及冲击后疲劳载荷作用下的破坏过程进行分析,研究了不同冲击能量、不同冲头材料、不同应力水平等因素对碳纤维假脚的冲击损伤及疲劳性能的影响规律。结果表明,在冲击载荷作用下,碳纤维复合材料假脚的损伤模式主要为基体开裂、纤维压缩和分层。随着冲击能量的增加,上述3种破坏模式的损伤单元数逐渐增大;尽管随着冲击能量的增加,碳纤维复合材料假脚的疲劳循环次数逐渐降低,但二者之间并不满足线性关系,即存在冲击能门槛值。对于碳纤维复合材料假脚而言,其冲击能门槛值为7J;冲头材料越硬,碳纤维复合材料结构件的冲击损伤面积越大,疲劳性能下降越剧烈;碳纤维复合材料假脚的疲劳循环次数随着加载应力的增加而显著降低。  相似文献   

8.
基于ABAQUS有限元软件结合VC++6.0程序设计,建立了含不同铺层角度、不同排列密度形状记忆合金(SMA)纤维的复合材料层合板有限元模型。将基于Brinson本构模型的SMA分段线性超弹性模型以及判断复合材料层内失效的三维HASHIN失效准则编译至ABAQUS/VUMAT子程序,使用界面单元模拟复合材料层间区域,建立了SMA复合材料层合板的低速冲击损伤及冲击后剩余强度数值模拟方法。对比了不含SMA纤维层合板、含SMA纤维层合板、含普通金属丝层合板在不同冲击能量下的损伤响应。进一步分析了SMA纤维体积分数和直径变化对冲击响应的影响。冲击后剩余压缩强度模拟结果表明:冲击能量为16J时,含体积分数25%、直径0.5mm的SMA纤维层合板的冲击后剩余压缩强度相比不含SMA纤维层合板提高5.78%、相比含普通金属丝层合板提高4.69%。随着SMA纤维体积分数提高,层合板的抗低速冲击能力增强,当体积分数一定时,较细的(0.3mm)SMA纤维比粗的(0.6mm)SMA纤维对层合板的抗低速冲击能力增强效果更好。  相似文献   

9.
通过弹道冲击实验开展了碳纤维编织复合材料层合板的抗侵彻性能研究,进行了动态响应分析和损伤模式分析。建立了基于Hashin失效和Yeh分层失效准则的渐进损伤模型,运用ABAQUS有限元软件模拟了碳纤维编织复合材料层合板的侵彻失效过程,采用Lambert-Jonas公式拟合了柱状弹侵彻层合板弹道极限曲线,对比分析了碳纤维编织复合材料层合板侵彻实验与数值模拟的弹道极限速度及损伤形貌。结果表明,层合板侵彻损伤模式主要为分层、纤维断裂和基体开裂失效,弹道极限速度数值模拟结果与实验结果吻合较好。  相似文献   

10.
使用[0°/0°/0°]T、[45°/0°/45°]T两种铺层角度将碳纤维经面缎纹织物、碳纤维平纹织物预浸料、不同面密度芳纶纬编双轴向织物(MBWK)三种增强材料混杂铺层,制备出厚度为1.30 mm的复合材料头盔壳体用超薄层合板。测试分析了层板冲击后的压缩性能,用C扫描超声波检测仪测试了层合板冲击损伤图像,使用Image Pro Plus图像分析软件计算出不同冲击条件下的超薄层合板冲击损伤面积,研究了增强体结构类型、铺层角度对超薄复合材料层合板冲击后压缩性能的影响。结果表明,使用铺层角度为[45°/0°/45°]T的增强体结构可抑制层板沿纤维方向的冲击损伤裂纹的扩展,但是冲击点损伤破坏严重;纬编双轴向织物的面密度越大,则层板冲击后的凹坑深度越小。与其他铺层结构相比,当铺层角度为[0°/0°/0°]T时底层为碳纤维预浸料、中间层纬编双轴向织物面密度为630 g/m2、面层为碳纤维经面缎纹织物的复合材料超薄层板的冲击损伤面积与凹坑深度均最小,分别为225.28 mm2、0.16 mm,其剩余冲击后压缩强度达到最大值97.43 MPa,压缩强度保持率75.72%。这种结构,具有优异的冲击后压缩性能。  相似文献   

11.
Composites are usually brittle materials and have low impact properties. Structural dimensions, stacking sequence, ply materials, ply thicknesses and ply angles are standard variables that influence composite‘s performance against impact loads. Stacking sequence in hybrid laminates affects the failure and impact resistance. Failure mechanisms at the low-velocity impact of a rigid object in hybrid laminates are complex, and the subsurface damage in a composite laminate cannot be detected directly. However, various simulation platforms make it easy to see the impact damage between the plies of laminate. This paper numerically investigated the effect of stack sequence and hybridization of two fiber types against low-velocity impact. The current study adopted four-layer composite laminates of carbon and glass fiber layers with a stacking plan [C/C/C/C], [C/G/C/G] and [G/C/G/C], having lay-up angles as [0°/45°/−45°/90°]. Keeping the impactor mass and the incident velocity constant, the laminates were subjected to low-velocity impact. The damage contours for a failure mode were recorded and compared at the ply level. The numerical study resulted in impact imitations showing comparisons of the damage contours using Hashin failure criteria. Hybrid laminates display better performance in absorbing impact energies; however, hybrid laminates experienced more subsurface damage due to more impact energy absorption.  相似文献   

12.
This paper is concerned with the optimum design of multiaxial fiber reinforced laminate systems under probabilistic conditions of loads and material properties. A multiaxially laminated composite is treated as a structural system with each ply contained in the composite as one element. The Tsai-Wu failure criterion is adopted as the limit state function of a unidirectional ply. It is assumed that the system failure occurs when any one of the plies in a laminate system fails. The multiple-check-point method is successfully applied to evaluate the system reliabilities of multiaxial laminates under probabilistic in-plane stresses. An optimization problem is defined to find the optimal number of fiber orientation axes, optimum orientation angles, and optimum ply ratios which yield the highest system reliability.  相似文献   

13.
基于有限断裂力学方法建立了一种预测多向复合材料开孔板拉伸强度的通用和半经验模型。该模型同时采用基于应力形式的失效准则和基于能量形式的失效准则预测失效。模型仅需铺层弹性常数、无缺口层合板的强度以及0°铺层的断裂韧性等参数。基于线弹性断裂力学建立了多向复合材料层合板的断裂韧性与0°铺层断裂韧性之间的关系, 进而预测了任意铺层复合材料开孔板发生纤维主导拉伸失效时的强度。将模型预测结果与开孔板拉伸强度的试验数据进行了对比验证, 预测误差最大为9.7%, 与点应力和平均应力等方法的对比表明, 该模型的预测精度高于传统的特征长度方法。   相似文献   

14.
The fracture process of composite laminates subjected to static or fatigue tensile loading involves sequential accumulation of intra- and interlaminar damage, in the form of transverse cracking, splitting and delamination, prior to catastrophic failure. Matrix cracking parallel to the fibres in the off-axis plies is the first damage mode observed. Since a damaged lamina within the laminate retains certain amount of its load-carrying capacity, it is important to predict accurately the stiffness properties of the laminate as a function of damage as well as progression of damage with the strain state. In this paper, theoretical modelling of matrix cracking in the off-axis plies of unbalanced symmetric composite laminates subjected to in-plane tensile loading is presented and discussed. A 2-D shear-lag analysis is used to determine ply stresses in a representative segment and the equivalent laminate concept is applied to derive expressions for Mode I, Mode II and the total strain energy release rate associated with off-axis ply cracking. Dependence of the degraded stiffness properties and strain energy release rates on the crack density and ply orientation angle is examined for glass/epoxy laminates. Suitability of a mixed mode fracture criterion to predict the cracking onset strain is also discussed.  相似文献   

15.
纤维增强复合材料层板高速冲击损伤数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
推导了复合材料应变率相关三维本构关系, 并将其用于复合材料层板高速冲击损伤的数值模拟。该模型在复合材料层间引入界面单元模拟层间分层, 结合三维Hashin失效准则进行单层板面内损伤识别, 引入材料刚度退化, 采用非线性有限元方法, 研究了复合材料层板高速冲击的破坏过程及层板的损伤特性。数值分析结果表明, 剩余速度预报结果与实验结果吻合较好, 层板的主要损伤形式是层间分层、 基体微裂纹和纤维断裂, 减小弹体直径、 增大铺层角度和层板厚度能够有效降低层板损伤面积。   相似文献   

16.
Fibre-reinforced multidirectional composite laminates are observed in experiments under transverse static or low-velocity impact loading to suffer considerable delamination damage. The intensity of this damage depends on the difference in the ply angles above and below the interface. In this paper a fracture mechanics model is presented for investigating the role of matrix cracks in triggering delaminations and the influence of ply angles in adjacent plies on delamination cracking. The fracture mechanics analysis shows that for a graphite fibre-reinforced composite laminate containing a transverse intraply crack, the crack-induced largest interfacial principal tensile stress is a maximum when the difference between the ply angles across the interface is 90 °, and it attains a minimum when the difference is 40 °. When the crack tips touch the interfaces, the minimum mode II stress singularity, which is weaker than the usual square-root type, appears when the difference between the ply angles is about 45 ° for one glass fibre-reinforced laminate and three graphite fibre-reinforced laminates. These results are in agreement with the experimental observation that the largest delaminations appear at the interface across which the difference between the ply angles is the largest i.e. 90 °.  相似文献   

17.
18.
SUMMARY

Fatigue failure of metal matrix composite laminates is often preceded by a substantial loss of stiffness associated with cyclic plastic straining and subsequent low-cycle fatigue crack growth in the matrix. Experimental observations suggest that two principal crack patterns are involved; these are related here to the deformation modes predicted by the bimodal plasticity theory of fibrous composites. The relation is utilized in modelling the damage process such that matrix crack growth is regarded as a shakedown mechanism leading to a saturation damage state. For a given program of variable cyclic loading, evaluation of the saturation state is formulated as a non-linear optimization problem, where the total damage in a laminate is minimized subject to non-linear constraints derived from the ply yield criterion, hardening rule, and physically motivated bounds on the damage parameters. Effective elastic stiffness reduction and local stress redistribution predicted by the optimization procedure are compared with experimental measurements on several B/AI laminates. Stress transfer to and overloading of the fibres in certain plies appears to cause final fatigue failure of the laminate.  相似文献   

19.
采用Abaqus软件建立了圆锥形子弹正冲击芳纶/玻璃纤维复合材料层合板的有限元模型,将模拟结果与文献中的实验结果相比较验证了模型的可靠性,进而研究子弹以不同的速度对不同铺陈角度下的复合材料层合板冲击后初始速度与剩余速度的关系以及层合板的破坏特征。结果表明:当层合板铺陈角度不变且子弹击穿层合板时,子弹初始速度与剩余速度接近于线性关系;在子弹未穿透层合板时,[0/90°]铺陈角度的层合板抗弹性能最好,在子弹以600~900 m/s的较高速度穿透层合板时,[45/-45°]铺陈角度的层合板吸能效果最好;由破坏特征图表明铺陈角度对层合板的损伤面积和破坏机制影响不大。该研究可为防护装备的设计和优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号