首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1561417篇
  免费   28504篇
  国内免费   7164篇
电工技术   34836篇
综合类   6619篇
化学工业   275093篇
金属工艺   65520篇
机械仪表   44186篇
建筑科学   47459篇
矿业工程   11564篇
能源动力   50621篇
轻工业   118438篇
水利工程   15927篇
石油天然气   37811篇
武器工业   147篇
无线电   198444篇
一般工业技术   291679篇
冶金工业   191481篇
原子能技术   34195篇
自动化技术   173065篇
  2021年   16006篇
  2020年   12219篇
  2019年   14939篇
  2018年   16767篇
  2017年   15920篇
  2016年   22174篇
  2015年   17944篇
  2014年   29277篇
  2013年   89053篇
  2012年   36888篇
  2011年   49953篇
  2010年   43862篇
  2009年   51933篇
  2008年   46613篇
  2007年   43947篇
  2006年   45875篇
  2005年   40709篇
  2004年   42486篇
  2003年   42250篇
  2002年   41332篇
  2001年   38243篇
  2000年   36418篇
  1999年   36063篇
  1998年   52989篇
  1997年   44301篇
  1996年   38690篇
  1995年   32786篇
  1994年   30411篇
  1993年   30283篇
  1992年   26666篇
  1991年   23966篇
  1990年   24123篇
  1989年   23318篇
  1988年   21884篇
  1987年   20007篇
  1986年   19398篇
  1985年   22760篇
  1984年   22659篇
  1983年   20641篇
  1982年   19545篇
  1981年   19676篇
  1980年   18331篇
  1979年   18740篇
  1978年   18048篇
  1977年   18453篇
  1976年   20683篇
  1975年   16262篇
  1974年   15692篇
  1973年   15772篇
  1972年   13251篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
92.
Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins’ native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.  相似文献   
93.
Journal of Communications Technology and Electronics - Abstract—The matrix coefficients of projection models of strip lines obtained using the Chebyshev basis are presented as a sum of...  相似文献   
94.
Analog Integrated Circuits and Signal Processing - This paper presents the complete design of a phase locked loop-based clock synthesizer for reconfigurable analog-to-digital converters. The...  相似文献   
95.
Catalysis Letters - An environmentally benign process for synthesizing 4-methoxyphenol through methylation of hydroquinone using polystyrene immobilized Bronsted acidic ionic liquid is presented....  相似文献   
96.
97.
Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a critical second messenger involved in numerous biological activities through extensive interactions with proteins and peptides. CaM’s ability to adapt to binding targets with different structures is related to the flexible central helix separating the N- and C-terminal lobes, which allows for conformational changes between extended and collapsed forms of the protein. CaM-binding targets are most often identified using prediction algorithms that utilize sequence and structural data to predict regions of peptides and proteins that can interact with CaM. In this review, we provide an overview of different CaM-binding proteins, the motifs through which they interact with CaM, and shared properties that make them good binding partners for CaM. Additionally, we discuss the historical and current methods for predicting CaM binding, and the similarities and differences between these methods and their relative success at prediction. As new CaM-binding proteins are identified and classified, we will gain a broader understanding of the biological processes regulated through changes in Ca2+ concentration through interactions with CaM.  相似文献   
98.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
99.
100.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号