首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   17篇
  国内免费   4篇
电工技术   37篇
综合类   3篇
化学工业   195篇
金属工艺   13篇
机械仪表   15篇
建筑科学   9篇
能源动力   24篇
轻工业   60篇
水利工程   2篇
无线电   40篇
一般工业技术   113篇
冶金工业   10篇
原子能技术   31篇
自动化技术   47篇
  2023年   3篇
  2022年   11篇
  2021年   4篇
  2020年   3篇
  2019年   11篇
  2018年   18篇
  2017年   10篇
  2016年   12篇
  2015年   10篇
  2014年   18篇
  2013年   48篇
  2012年   33篇
  2011年   31篇
  2010年   23篇
  2009年   27篇
  2008年   37篇
  2007年   18篇
  2006年   25篇
  2005年   34篇
  2004年   14篇
  2003年   11篇
  2002年   18篇
  2001年   12篇
  2000年   10篇
  1999年   12篇
  1998年   8篇
  1997年   8篇
  1996年   6篇
  1995年   9篇
  1994年   8篇
  1993年   7篇
  1992年   10篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1984年   7篇
  1983年   9篇
  1982年   7篇
  1981年   2篇
  1980年   10篇
  1979年   2篇
  1978年   7篇
  1976年   1篇
  1973年   2篇
  1971年   1篇
  1932年   2篇
排序方式: 共有599条查询结果,搜索用时 15 毫秒
21.
The purpose of this study is to develop a simple method to observe the surface morphology of non-conductive material in its hydrated condition. Here porous hydroxyapatite (HAp) green body prepared by gelcasting process was considered as a case study, and, the resultant body was subsequently treated with hydrophilic ionic liquid (IL). The surface morphology and the pore structure of the IL-treated porous HAp green body were successfully observed even in hydrated condition without any charging using field emission scanning electron microscope (FE-SEM). Results showed that the pore diameter from 300 to 600 μm in as-prepared green body was reduced to 100–300 μm in the sample sintered at 1000 °C. Raman results showed that the IL forms weak hydrogen bond with water molecules within the sample and, that prevents from drying in vacuum condition. In addition, the IL acts as a conducting media for HAp ceramics to be observed under FE-SEM.  相似文献   
22.
Bioresorbable and functionally graded apatites (fg-HAp) ceramics, which are characterized by gradations in crystallinity and the grain size of hydroxyapatite (HAp:Ca10(PO4)6(OH)2), were designed using bovine bone by the calcination and partial dissolution–precipitation method. The fg-HAp ceramics had macropores of 100–600 μm originated from spongy bone, and micropores of 10–160 nm. Fg-HAp ceramics loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2/fg-HAp) were implanted into the subcutaneous tissue of rats. Eight weeks after the implantation, the surface and bulk degradations of the fg-HAp-containing body fluid occured, and small pieces of fg-HAp were incorporated into the induced bone and fatty marrow, suggesting that osteoinduction occurred in conjunction with bone remodeling. The rhBMP-2/fg-HAp ceramics developed could become a resorbable biomimetic material with fast bioresorption and osteoinduction characteristics.  相似文献   
23.
Nitrogenated diamond-like (DLC:N) carbon thin films have been deposited by microwave surface wave plasma chemical vapor deposition on silicon and quartz substrates, using argon gas, camphor dissolved in ethyl alcohol composition and nitrogen as plasma source. The deposited DLC:N films were characterized for their chemical, optical, structural and electrical properties through X-ray photoelectron spectroscopy, UV/VIS/NIR spectroscopy, Raman spectroscopy, atomic force microscope and current–voltage characteristics. Optical band gap decreased (2.7 to 2.4 eV) with increasing Ar gas flow rate. The photovoltaic measurements of DLC:N / p-Si structure show that the open-circuit voltage (Voc) of 168.8 mV and a short-circuit current density (Jsc) of 8.4 μA/cm2 under light illumination (AM 1.5 100 mW/cm2). The energy conversion efficiency and fill factor were found to be 3.4 × 10− 4% and 0.238 respectively.  相似文献   
24.
The nitrogen doped diamond-like carbon (DLC) thin films were deposited on quartz and silicon substrates by a newly developed microwave surface-wave plasma chemical vapor deposition, aiming the application of the films for photovoltaic solar cells. For film deposition, we used argon as carrier gas, nitrogen as dopant and hydrocarbon source gases, such as camphor (C10H16O) dissolved with ethyl alcohol (C2H5OH), methane (CH4), ethylene (C2H4) and acetylene (C2H2). The optical and electrical properties of the films were studied using X-ray photoelectron spectroscopy, Nanopics 2100/NPX200 surface profiler, UV/VIS/NIR spectroscopy, atomic force microscope, electrical conductivity and solar simulator measurements. The optical band gap of the films has been lowered from 3.1 to 2.4 eV by nitrogen doping, and from 2.65 to 1.9 eV by experimenting with different hydrocarbon source gases. The nitrogen doped (flow rate: 5 sccm; atomic fraction: 5.16%) film shows semiconducting properties in dark (i.e. 8.1 × 10− 4 Ω− 1 cm− 1) and under the light illumination (i.e. 9.9 × 10− 4 Ω− 1 cm− 1). The surface morphology of the both undoped and nitrogen doped films are found to be very smooth (RMS roughness ≤ 0.5 nm). The preliminary investigation on photovoltaic properties of DLC (nitrogen doped)/p-Si structure show that open-circuit voltage of 223 mV and short-circuit current density of 8.3 × 10− 3 mA/cm2. The power conversion efficiency and fill factor of this structure were found to be 3.6 × 10− 4% and 17.9%, respectively. The use of DLC in photovoltaic solar cells is still in its infancy due to the complicated microstructure of carbon bondings, high defect density, low photoconductivity and difficulties in controlling conduction type. Our research work is in progress to realize cheap, reasonably high efficiency and environmental friendly DLC-based photovoltaic solar cells in the future.  相似文献   
25.
2-Monoacylglycerol (2-MAG) is one of the digestion products of dietary lipids. We recently demonstrated that a 2-MAG, 2-arachidonoyl glycerol (2-AG) potently stimulated cholecystokinin (CCK) secretion via cannabinoid receptor 1 (CB1) in a murine CCK-producing cell line, STC-1. CCK plays a crucial role in suppressing postprandial gastric emptying. To examine the effect of 2-AG on gastric emptying, we performed acetaminophen and phenol red recovery tests under oral or intraperitoneal administration of 2-AG in mice. Orally administered 2-AG (25 mg/kg) suppressed the gastric emptying rate in mice, as determined by the acetaminophen absorption test and phenol red recovery test. Intraperitoneal administration of a cholecystokinin A receptor antagonist (0.5 mg/kg) attenuated the gastric inhibitory emptying effect. In addition, both oral (10 mg/kg) and intraperitoneal (0.5 mg/kg) administration of a CB1 antagonist counteracted the 2-AG-induced gastric inhibitory effect. Furthermore, intraperitoneal 2-AG (25 mg/kg) suppressed gastric emptying. These results indicate that 2-AG exhibits an inhibitory effect on gastric emptying in mice, possibly mediated by stimulating both CCK secretion via CB1 expressed in CCK-producing cells and acting on CB1 expressed in the peripheral nerves. Our findings provide novel insights into the 2-MAG-sensing mechanism in enteroendocrine cells and the physiological role of 2-MAG.  相似文献   
26.
Nlon 6 fibers were zone drawn and zone annealed by using a continuous wave carbon dioxide laser to develop their mechanical properties. A laser‐heating zone drawing was carried out under a applied tension of 35.4 MPa at a power density of 9.65 W · cm?2, and then the zone‐drawn fiber was annealed. A laser‐heating zone annealing was carried out in two steps at a power density of 9.65 W · cm?2; the first step was carried out under 423 MPa and the second under 517 MPa. The treating temperature of the fiber heated by the CO2 laser was measured by using an infrared thermographic camera equipped with a magnifying lens. The treating temperature at the zone drawing is 138°C, and those at the first and the second zone annealing are 121 and 125°C, respectively. The second laser‐heated zone‐annealed fiber has a birefringence of 65.2 × 10?3, a degree of crystallinity of 54%, and a storage modulus of 21 GPa at 25°C. Wide‐angle X‐ray diffraction patterns for the laser‐heated zone‐drawn and the zone‐annealed fibers show (200) reflection and (002/202) doublet due to only an α form on the equator. The laser‐heated zone‐drawn fiber has a melting endotherm peaking at 216°C and a trace of shoulder on the higher temperature side of its peak, and the laser‐heated zone‐annealed fibers have a single melting endotherm peaking at 216°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1711–1716, 2002  相似文献   
27.
A novel cellulose solution, prepared by dissolving an alkali-soluble cellulose, which was obtained by the steam explosion treatment on almost pure natural cellulose (soft wood pulp), into the aqueous sodium hydroxide solution with specific concentration (9.1 wt %) was employed for the first time to prepare a new class of multifilament-type cellulose fiber. For this purpose a wet spinning system with acid coagulation bath was applied. The mechanical properties and structural characteristics of the resulting cellulose fibers were compared with those of regenerated cellulose fibers such as viscose rayon and cuprammonium rayon commercially available. X-ray analysis shows that the new cellulose fiber is crystallographically cellulose II, and its crystallinity is higher but its crystalline orientation is slightly lower than those of other commercial regenerated fibers. The degree of breakdown of intramolecular hydrogen bond at C3[Xam(C3)] of the cellulose fiber, as determined by solid-state cross-polarization magic-angle sample spinning (CP/MAS) 13C NMR, is much lower than other, and the NMR spectra of its dry and wet state were significantly different from each other, indicating that cellulose molecules in the new cellulose fiber are quite mobile when wet. This phenomenon has not been reported for so-called regenerated cellulose fibers.  相似文献   
28.
Microstructure and mechanical property of silicon nitride (Si3N4) ceramic are strongly dependent on the selection of sintering additives. When rare‐earth (RE) oxide is used as the sintering additive, segregation of RE ions at interface between Si3N4 grain and intergranular glassy film (IGF) is believed to play a critical role. Although the ionic radius of RE ion is known to be an empirical parameter to modify the mechanical property, the correlation between the segregated ions and their ionic radii is still under controversy. In order to address this issue, (i) rate of α‐β phase transformation and (ii) segregation behavior at the interface were studied for Si3N4 ceramics sintered using mixture of La2O3 and Lu2O3 as additives in this study. Specimens of Lu content 30% and higher exhibited lower activation energies for the α‐β phase transformation as compared with those of Lu content 20% and lower. In terms of the segregation behavior, La was preferably segregated at one site and Lu at the other site along β‐Si3N4/IGF interface in the specimens of Lu content 30% and higher. It is understood from these results that Lu segregation site should be more closely related with grain growth.  相似文献   
29.
The surface grafting of polymers onto a glass plate surface was achieved by the polymerization of vinyl monomers initiated by initiating groups introduced onto the surface. Azo groups were introduced onto the glass plate surface by the reaction of 4,4′-azobis(4-cyanopentanoic acid) with isocyanate groups, which were introduced by the treatment with tolylene-2,4-diisocyanate. The radical polymerization of various vinyl monomers was initiated by azo groups introduced onto the glass plate surface and the corresponding polymers were grafted from the surface: The surface grafting of polymers was confirmed by IR spectra, and the contact angle of surface, with water. The contact angle of the glass plate increased by the grafting of hydrophobic polymers, but decreased by the grafting of hydrophilic polymers. The radical postpolymerization was successfully initiated by the pendant peroxycarbonate groups of grafted polymer on the surface to give branched polymer-grafted glass plate. The cationic polymerization of vinyl monomers was also successfully initiated by benzylium perchlorate groups introduced onto the glass plate surface and the corresponding polymers were grafted onto the surface. The contact angle of the glass plate surface obtained from the cationic polymerization of styrene was larger than that obtained from the radical polymerization. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2165–2172, 1997  相似文献   
30.
Due to the growing demand for tactile sensors, the possibility of detecting an external uniaxial pressure by the piezoresistive measuring of a conductive filler/elastomer composite was investigated. A series of piezoresistive models are discussed. Novel highly sensitive piezoresistive foams with excellent elasticity were fabricated using vapor‐grown carbon fiber (VGCF), two‐component silicone elastomer and a new type of thermally expandable micro beads foaming agent to overcome the disadvantages of the silicone elastomer in the utilization of a tactile sensor. Deformations of the foams caused by uniaxial pressure were observed using scanning electron microscopy from cross‐sections. Effects of the VGCF and the foaming agent on the piezoresistivitiy were investigated. The piezoresistive mechanisms of the foams are discussed according to the measurements, and good fit was found between the theoretical calculations and the experimental piezoresistivity measurements. It is found that the addition of the micro beads foaming agent can improve the piezoresistivity of the VGCF/silicone foam and increase the sensitivity and repeatability for its application in a tactile sensor. © 2016 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号