首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1460篇
  免费   76篇
  国内免费   13篇
电工技术   22篇
综合类   11篇
化学工业   313篇
金属工艺   44篇
机械仪表   102篇
建筑科学   42篇
矿业工程   10篇
能源动力   53篇
轻工业   93篇
水利工程   5篇
石油天然气   15篇
无线电   214篇
一般工业技术   266篇
冶金工业   143篇
原子能技术   15篇
自动化技术   201篇
  2023年   18篇
  2022年   24篇
  2021年   39篇
  2020年   28篇
  2019年   30篇
  2018年   39篇
  2017年   40篇
  2016年   36篇
  2015年   31篇
  2014年   50篇
  2013年   116篇
  2012年   67篇
  2011年   99篇
  2010年   77篇
  2009年   86篇
  2008年   77篇
  2007年   75篇
  2006年   51篇
  2005年   57篇
  2004年   43篇
  2003年   36篇
  2002年   43篇
  2001年   26篇
  2000年   25篇
  1999年   23篇
  1998年   44篇
  1997年   49篇
  1996年   35篇
  1995年   21篇
  1994年   21篇
  1993年   16篇
  1992年   3篇
  1991年   11篇
  1990年   4篇
  1989年   9篇
  1988年   17篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   7篇
  1977年   5篇
  1975年   3篇
  1974年   3篇
  1973年   8篇
排序方式: 共有1549条查询结果,搜索用时 15 毫秒
71.
Steam-methane reforming (SMR) reaction was studied using a tubular reactor packed with NiO/γ-Al2O3 catalyst to obtain synthesis gases with H2/CO ratios optimal for the production of synthetic diesel fuel from steam-hydrogasification of carbonaceous materials. Pure CH4 and CH4-CO2 mixtures were used as reactants in the presence of steam. SMR runs were conducted at various operation parameters. Increasing temperature from 873 to 1,023 K decreased H2/CO ratio from 20 to 12. H2/CO ratio decreased from 16 to 12 with pressure decreasing from 12.8 to 1.7 bars. H2/CO ratio also decreased from about 11 to 7 with steam/CH4 ratio of feed decreasing from 5 to 2, the lowest limit to avoid severe coking. With pure CH4 as the feed, H2/CO ratio of synthesis gas could not be lowered to the optimal range of 4–5 by adjusting the operation parameters; however, the limitation in optimizing the H2/CO ratio for synthetic diesel fuel production could be removed by introducing CO2 to CH4 feed to make CH4-CO2 mixtures. This effect can be primarily attributed to the contributions by CO2 reforming of CH4 as well as reverse water-gas shift reaction, which led to lower H2/CO ratio for the synthesis gas. A simulation technique, ASPEN Plus, was applied to verify the consistency between experimental data and simulation results. The model satisfactorily simulated changes of H2/CO ratio versus the operation parameters as well as the effect of CO2 addition to CH4 feed.  相似文献   
72.
Epoxy resin was mixed with phenolic resins in different percentages by weight. Composite 40/60 means the proportion by weight of epoxy resin is 40%. It was found that only composites 50/50 and 40/60 could be cured in ambient conditions. Dynamic mechanical analysis showed that only these two composites form interpenetrating polymer network. The addition of linseed oil to the two resins results also in the formation of interpenetrating network irrespective of proportion by weight of the resins; the mechanical properties will only be better when the percentage by weight of epoxy resin is higher; the aim of reducing cost and at the same time maintaining the mechanical properties cannot be fully achieved because epoxy resin is much more expensive than its counterpart.  相似文献   
73.
Hepatic fibrosis occurs when liver tissue becomes scarred from repetitive liver injury and inflammatory responses; it can progress to cirrhosis and eventually to hepatocellular carcinoma. Previously, we reported that neoagarooligosaccharides (NAOs), produced by the hydrolysis of agar by β-agarases, have hepatoprotective effects against acetaminophen overdose-induced acute liver injury. However, the effect of NAOs on chronic liver injury, including hepatic fibrosis, has not yet been elucidated. Therefore, we examined whether NAOs protect against fibrogenesis in vitro and in vivo. NAOs ameliorated PAI-1, α-SMA, CTGF and fibronectin protein expression and decreased mRNA levels of fibrogenic genes in TGF-β-treated LX-2 cells. Furthermore, downstream of TGF-β, the Smad signaling pathway was inhibited by NAOs in LX-2 cells. Treatment with NAOs diminished the severity of hepatic injury, as evidenced by reduction in serum alanine aminotransferase and aspartate aminotransferase levels, in carbon tetrachloride (CCl4)-induced liver fibrosis mouse models. Moreover, NAOs markedly blocked histopathological changes and collagen accumulation, as shown by H&E and Sirius red staining, respectively. Finally, NAOs antagonized the CCl4-induced upregulation of the protein and mRNA levels of fibrogenic genes in the liver. In conclusion, our findings suggest that NAOs may be a promising candidate for the prevention and treatment of chronic liver injury via inhibition of the TGF-β/Smad signaling pathway.  相似文献   
74.
Journal of Mechanical Science and Technology - Flexible forming technology such as Multi-point dieless forming (MDF) has benefits for the sheet metal field because it can implement a variety of...  相似文献   
75.
Soybeans are nutritionally important as human food and animal feed. Apart from the macronutrients such as proteins and oils, soybeans are also high in health-beneficial secondary metabolites and are uniquely enriched in isoflavones among food crops. Isoflavone biosynthesis has been relatively well characterized, but the mechanism of their transportation in soybean cells is largely unknown. Using the yeast model, we showed that GmMATE1 and GmMATE2 promoted the accumulation of isoflavones, mainly in the aglycone forms. Using the tobacco BrightYellow-2 (BY-2) cell model, GmMATE1 and GmMATE2 were found to be localized in the vacuolar membrane. Such subcellular localization supports the notion that GmMATE1 and GmMATE2 function by compartmentalizing isoflavones in the vacuole. Expression analyses showed that GmMATE1 was mainly expressed in the developing soybean pod. Soybean mutants defective in GmMATE1 had significantly reduced total seed isoflavone contents, whereas the overexpression of GmMATE1 in transgenic soybean promoted the accumulation of seed isoflavones. Our results showed that GmMATE1, and possibly also GmMATE2, are bona fide isoflavone transporters that promote the accumulation of isoflavones in soybean seeds.  相似文献   
76.
The engineering of vascular regeneration still involves barriers that need to be conquered. In the current study, a novel nanocomposite comprising of fibronectin (denoted as FN) and a small amount of silver nanoparticles (AgNP, ~15.1, ~30.2 or ~75.5 ppm) was developed and its biological function and biocompatibility in Wharton’s jelly-derived mesenchymal stem cells (MSCs) and rat models was investigated. The surface morphology as well as chemical composition for pure FN and the FN-AgNP nanocomposites incorporating various amounts of AgNP were firstly characterized by atomic force microscopy (AFM), UV-Visible spectroscopy (UV-Vis), and Fourier-transform infrared spectroscopy (FTIR). Among the nanocomposites, FN-AgNP with 30.2 ppm silver nanoparticles demonstrated the best biocompatibility as assessed through intracellular ROS production, proliferation of MSCs, and monocytes activation. The expression levels of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, were also examined. FN-AgNP 30.2 ppm significantly inhibited pro-inflammatory cytokine expression compared to other materials, indicating superior performance of anti-immune response. Mechanistically, FN-AgNP 30.2 ppm significantly induced greater expression of vascular endothelial growth factor (VEGF) and stromal-cell derived factor-1 alpha (SDF-1α) and promoted the migration of MSCs through matrix metalloproteinase (MMP) signaling pathway. Besides, in vitro and in vivo studies indicated that FN-AgNP 30.2 ppm stimulated greater protein expressions of CD31 and von Willebrand Factor (vWF) as well as facilitated better endothelialization capacity than other materials. Furthermore, the histological tissue examination revealed the lowest capsule formation and collagen deposition in rat subcutaneous implantation of FN-AgNP 30.2 ppm. In conclusion, FN-AgNP nanocomposites may facilitate the migration and proliferation of MSCs, induce endothelial cell differentiation, and attenuate immune response. These finding also suggests that FN-AgNP may be a potential anti-inflammatory surface modification strategy for vascular biomaterials.  相似文献   
77.
Understanding aqueous dispersion, rheological properties and colloidal stabilisation mechanisms of hierarchically assembled ceramic powders is important for progress in the fields of catalysis, separation and/or adsorption. The present study was designed to evaluate the rheological and sedimentation behaviour of highly loaded aqueous suspensions (up to φA = 0.126) containing AlN-powder-hydrolysis-derived, micron-sized, mesoporous, gamma alumina (MA) particulates with a high surface area (~180 m2/g) dispersed with sodium polyacrylate (NaPAA). The as-prepared suspensions were prone to sedimentation and segregation. However, when divalent cations (Mg2+, Ca2+) or cellulose nanofibers were added, the formation of interparticle association networks in the aqueous suspensions containing MA particles was triggered, facilitating their long-term resistance to sedimentation lasting more than 12 weeks.  相似文献   
78.
The stability of Fe/ZSM‐5 de‐NOx catalyst has been investigated. The samples are prepared by sublimation of iron chloride. Substantial amount of protons are found to remain in the fresh catalyst after washing and calcination. After 10 h exposure to wet exhaust gas at 600°C, the catalyst is severely deactivated. The presence of steam induces dealumination of the ZSM‐5 matrix, because the protons provide the point of attack by water. In addition, highly reactive distorted tetrahedral iron species and tetrahedral species change to less reactive octahedral iron ions or iron agglomerates upon aging treatment. With the second sublimation of iron chloride, the iron loading is increased and thus the concentration of remaining protons is reduced. Also, the catalyst turns out to preserve more reactive iron ions after aging treatment. In conclusion, the second sublimation is believed to bring about a remarkable improvement in the stability of the Fe/ZSM‐5 catalyst although its de‐NOx activity is slightly decreased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
79.
80.
As the first step of DRAM manufacture, preanneal process plays an important role in determining the threshold voltage variation. It is found that the higher trans-1,2-dichloroethene flow in pad oxide growth and the higher nitrogen flow in high-temperature annealing step would respectively engender a lower boron segregation coefficient and higher nitridation of the oxide, both modify the boron distribution in the substrate and consequently the behavior of the threshold voltage. As the feature size of DRAM devices enter nanometer regime, besides gate oxidation, ion implantation and related thermal processes, the impact of preanneal process condition should be prudentially taken into consideration for rigorous control of the threshold voltage in the advanced DRAM production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号