首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10059篇
  免费   766篇
  国内免费   95篇
电工技术   196篇
综合类   46篇
化学工业   2752篇
金属工艺   238篇
机械仪表   427篇
建筑科学   369篇
矿业工程   25篇
能源动力   629篇
轻工业   968篇
水利工程   206篇
石油天然气   156篇
武器工业   5篇
无线电   1035篇
一般工业技术   1682篇
冶金工业   242篇
原子能技术   67篇
自动化技术   1877篇
  2024年   42篇
  2023年   198篇
  2022年   368篇
  2021年   651篇
  2020年   587篇
  2019年   715篇
  2018年   825篇
  2017年   787篇
  2016年   772篇
  2015年   453篇
  2014年   746篇
  2013年   1108篇
  2012年   702篇
  2011年   765篇
  2010年   505篇
  2009年   435篇
  2008年   263篇
  2007年   193篇
  2006年   154篇
  2005年   101篇
  2004年   105篇
  2003年   60篇
  2002年   58篇
  2001年   29篇
  2000年   23篇
  1999年   25篇
  1998年   23篇
  1997年   18篇
  1996年   23篇
  1995年   19篇
  1994年   10篇
  1993年   15篇
  1992年   10篇
  1991年   18篇
  1990年   17篇
  1989年   14篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   14篇
  1983年   12篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1973年   2篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Despite significant investment, childhood malnutrition continues to be a significant public health problem especially in least developed countries. The aim of this study was to find association between household biomass fuel (BMF) use and childhood malnutrition in Bangladesh using data from Demographic and Health Survey 2011. We included a total 6891 children under 5 years of age in the analysis. The prevalence of wasting, underweight, and stunting from BMF using household was 16.1% (n = 997; 95%CI, 15.1–17.3), 39.0% (n = 2399; 95%CI, 37.1–40.9), and 43.3% (n = 2620; 95%CI, 41.6–45.1), respectively. Underweight and stunting were significantly higher among children from households using BMF compared with the children from CF using households (underweight, biomass vs clean fuel: 39.0% vs. 23.5%, < 0.001; stunting, biomass vs clean fuel: 43.3 vs. 31.5%, < 0.001). The use of BMF in the household was significantly associated with underweight (OR = 1.38; 95%CI: 1.10–1.73) and stunting (OR = 1.58; 95%CI: 1.18–1.98) among children <5 years of age after adjusting possible confounders in mixed effect logistic regression analysis. This study found a significant association between chronic childhood malnutrition and household BMF use which is indicating possible alternative risk factor for malnutrition. Further prospective research is required to explore the mechanism of how BMF use results in chronic malnutrition.  相似文献   
992.
Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC.  相似文献   
993.
Doxorubicin increases endothelial permeability, hence increasing cardiomyocytes’ exposure to doxorubicin (DOX) and exposing myocytes to more immediate damage. Reactive oxygen species are major effector molecules of doxorubicin’s activity. Mangiferin (MGN) is a xanthone derivative that consists of C-glucosylxanthone with additional antioxidant properties. This particular study assessed the effects of MGN on DOX-induced cytotoxicity in human umbilical vein endothelial cells’ (HUVECs’) signaling networks. Mechanistically, MGN dramatically elevated Nrf2 expression at both the messenger RNA and protein levels through the upregulation of the PI3K/AKT pathway, leading to an increase in Nrf2-downstream genes. Cell apoptosis was assessed with a caspase-3 activity assay, transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) staining was performed to assess DNA fragmentation, and protein expression was determined by Western blot analysis. DOX markedly increased the generation of reactive oxygen species, PARP, caspase-3, and TUNEL-positive cell numbers, but reduced the expression of Bcl-2 and antioxidants’ intracellular concentrations. These were effectively antagonized with MGN (20 μM), which led to HUVECs being protected against DOX-induced apoptosis, partly through the PI3K/AKT-mediated NRF2/HO-1 signaling pathway, which could theoretically protect the vessels from severe DOX toxicity.  相似文献   
994.
Water Resources Management - Concerning the various effects of climate change on intensifying extreme weather phenomena all around the world, studying its possible consequences in the following...  相似文献   
995.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
996.
The aim of this study is to introduce a comprehensive comparison of various energy management strategies of fuel cell/supercapacitor/battery storage systems. These strategies are utilized to manage the energy demand response of hybrid systems, in an optimal way, under highly fluctuating load condition. Two novel strategies based on salp swarm algorithm (SSA) and mine-blast optimization are proposed. The outcomes of these strategies are compared with commonly used strategies like fuzzy logic control, classical proportional integral control, the state machine, equivalent fuel consumption minimization, maximization, external energy maximization, and equivalent consumption minimization. Hydrogen fuel economy and overall efficiency are used for the comparison of these different strategies. Results demonstrate that the proposed SSA management strategy performed best compared with all other used strategies in terms of hydrogen fuel economy and overall efficiency. The minimum consumed hydrogen and maximum efficiency are found 19.4 gm and 85.61%, respectively.  相似文献   
997.
The present study numerically explores the mixed convection phenomena in a differentially heated ventilated square cavity with active flow modulation via a rotating plate. Forced convection flow in the cavity is attained by maintaining external fluid flow through an opening at the bottom of the left cavity wall while leaving it through another opening at the right cavity wall. A counter-clockwise rotating plate at the center of the cavity acts as an active flow modulator. Moving mesh approach is used for the rotation of the plate and the numerical solution is achieved using arbitrary Lagrangian-Eulerian finite element formulation with a quadrilateral discretization scheme. Transient parametric simulations have been performed for various frequency of the rotating plate for a fixed Reynolds number (Re) of 100 based on maximum inlet flow velocity while the Richardson number (Ri) is maintained at unity. Heat transfer performance has been evaluated in terms of spatially averaged Nusselt number and time-averaged Nusselt number along the heated wall. Power spectrum analysis in the frequency domain obtained from the fast Fourier transform analysis indicates that thermal frequency and plate frequency start to deviate from each other at higher values of velocity ratio (>4).  相似文献   
998.
The ice melting is investigated inside a square cavity with two isothermally partially active walls. The concept of dispersing hybrid alumina–Cu nanoparticles and hybrid silica–multiwalled carbon nanotubes (MWCNTs) nanoparticles is recommended for thermal performance enhancement in this thermal energy storage (TES) system. The two-dimensional explicit lattice Boltzmann convection melting scheme in the single-phase model is applied to account for the natural convection flow induced in the melt region and evolution of the solid–liquid interface. The complete melting time for the pure phase change material (PCM) using case (II) is 33.3% lower compared with other cases. If the price of hybrid Al2O3–Cu nanoparticles and heat storage capacity is important, the full melt time diminishes by 16.6% with a volume fraction of 0.01 in case (II). Once hybrid silica–MWCNT nanoparticles with a volume fraction of 0.01 are utilized inside case (II), the lowest charging time is achieved. The complete melting time abates by 23.66% in contrast to the pure PCM melting. The use of single/hybrid nanoparticles to enhance the PCM melting is not necessarily economical as efficient positions of active parts could further lessen the charging time. The efficiency of hybrid nanoparticles is linked to the type and weight proportions of nanoparticles, and positions of thermally active parts.  相似文献   
999.
Multimedia Tools and Applications - Auto understanding of human activities in video is an increasing necessity in some application realms. The existing methods for human’s activity...  相似文献   
1000.
Multimedia Tools and Applications - Face detection by low-resolution image (LR) is one of the key aspects of Human-Computer Interaction(HCI). Due to the LR image, which has changes in pose,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号