首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1542031篇
  免费   200726篇
  国内免费   114759篇
电工技术   116800篇
技术理论   73篇
综合类   154289篇
化学工业   226072篇
金属工艺   92829篇
机械仪表   96173篇
建筑科学   102829篇
矿业工程   56713篇
能源动力   63318篇
轻工业   129159篇
水利工程   41740篇
石油天然气   64066篇
武器工业   20422篇
无线电   186678篇
一般工业技术   161361篇
冶金工业   61263篇
原子能技术   18327篇
自动化技术   265404篇
  2024年   5582篇
  2023年   29785篇
  2022年   55124篇
  2021年   67473篇
  2020年   67236篇
  2019年   47248篇
  2018年   51919篇
  2017年   52258篇
  2016年   54253篇
  2015年   51270篇
  2014年   116342篇
  2013年   141618篇
  2012年   214965篇
  2011年   199918篇
  2010年   139965篇
  2009年   141258篇
  2008年   78663篇
  2007年   112426篇
  2006年   92777篇
  2005年   37674篇
  2004年   16360篇
  2003年   12544篇
  2002年   11746篇
  2001年   9413篇
  2000年   9441篇
  1999年   6909篇
  1998年   4683篇
  1997年   3687篇
  1996年   3457篇
  1995年   2606篇
  1994年   2224篇
  1993年   2138篇
  1992年   1856篇
  1991年   1617篇
  1990年   1489篇
  1989年   1240篇
  1988年   1874篇
  1987年   3565篇
  1986年   478篇
  1985年   392篇
  1984年   263篇
  1983年   144篇
  1982年   291篇
  1981年   210篇
  1980年   246篇
  1979年   202篇
  1978年   25篇
  1976年   50篇
  1959年   243篇
  1951年   273篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
4.
Small object detection is challenging and far from satisfactory. Most general object detectors suffer from two critical issues with small objects: (1) Feature extractor based on classification network cannot express the characteristics of small objects reasonably due to insufficient appearance information of targets and a large amount of background interference around them. (2) The detector requires a much higher location accuracy for small objects than for general objects. This paper proposes an effective and efficient small object detector YOLSO to address the above problems. For feature representation, we analyze the drawbacks in previous backbones and present a Half-Space Shortcut(HSSC) module to build a background-aware backbone. Furthermore, a coarse-to-fine Feature Pyramid Enhancement(FPE) module is introduced for layer-wise aggregation at a granular level to enhance the semantic discriminability. For loss function, we propose an exponential L1 loss to promote the convergence of regression, and a focal IOU loss to focus on prime samples with high classification confidence and high IOU. Both of them significantly improves the location accuracy of small objects. The proposed YOLSO sets state-of-the-art results on two typical small object datasets, MOCOD and VeDAI, at a speed of over 200 FPS. In the meantime, it also outperforms the baseline YOLOv3 by a wide margin on the common COCO dataset.  相似文献   
5.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
6.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
7.
Biologically inspired design (BID) is one of the common methods for product design. To solve the problem of inaccurate acquisition of inspirational creatures due to the lack of user perception preference analysis, a data-driven intelligent service model for BID considering user perception needs is proposed based on Kansei engineering. Firstly, by extracting the perceptual features of creatures from the semantic source elements of products through mapping and encodes them, we proposed a data acquisition method based on intuitionistic fuzzy sets considering different customer preference distributions, bridging the gap caused by the asymmetry between designers and users. Secondly, the functional relationship between biometric features and user-perceived attributes is identified and predicted, and a predictive model of biodata considering user preferences is obtained by multiple linear regression analysis. Finally, based on the data clustering and reorganization theory to understand the organization and dynamics of the database, the construction of a BID library was completed, and the design resources in the library were used as analyzed knowledge for designers to plan design activities. Taking the bionic design of a UAV product as an example, a prototype of a computer-aided design service system was developed based on the theory proposed in the article, and the analyzed knowledge was used to improve the efficiency and science of the design, effectively verifying the usefulness of this study for design. To a certain extent, this study addresses the problem of cognitive limitations of designers and cognitive differences between designers and users, promotes the application of bioinspiration in product design, and improves the marketability of design solutions.  相似文献   
8.
In this work, assembly pressure and flow channel size on proton exchange membrane fuel cell performance are optimized by means of a multi-model. Based on stress-strain data of the SGL-22BB GDL obtained from its initial compression experiments, Young's modulus with different ranges of assembly pressure fits well through modeling. A mechanical model is established to analyze influences of assembly pressure on various gas diffusion layer parameters. Moreover, a CFD calculation model with different assembly pressures, channel width, and channel depth are established to calculate PEMFC performances. Furthermore, a BP neural network model is utilized to explore optimal combination of assembly pressure, channel width and channel depth. Finally, the CFD model is used to validate effect of size optimization on PEMFC performance. Results indicate that gap change of GDL below bipolar ribs is more remarkable than that below channels under action of the assembly pressure, making liquid water easily transported under high porosity, which is conducive to liquid water to the channels, reduces the accumulation of liquid water under the ribs, and enhances water removal in the PEMFC. Affected by the assembly force, change of GDL porosity affects its diffusion rate, permeability and other parameters, which is not conducive to mass transfer in GDL. Optimizing the depth and different dimensions through width of the flow field can effectively compensate for this effect. Therefore, the PEMFC performance can be enhanced through the comprehensive optimization of the assembly force, flow channel width and flow channel depth. The optimal parameter is obtained when assembly pressure, channel width and channel depth are set as 0.6 MPa, 0.8 mm, and 0.8 mm, respectively. The parameter optimization enhances the mass transfer, impedance, and electrochemical characteristics of PEMFC. Besides, it effectively enhances the quality transfer efficiency inside GDL, prevents flooding, and reduces concentration loss and ohmic loss.  相似文献   
9.
Electrocatalytic nitrogen reduction reaction (ENRR) offers a carbon-neutral process to fix nitrogen into ammonia, but its feasibility depends on the development of highly efficient electrocatalysts. Herein, we report that Fe ion grafted on MoO3 nanorods synthesized by an impregnation technique can efficiently enhance the electron harvesting ability and the selectivity of H+ during the NRR process in neutral electrolyte. In 0.1 M Na2SO4 solution, the electrocatalyst exhibited a remarkable NRR activity with an NH3 yield of 9.66 μg h?1 mg?1cat and a Faradaic efficiency (FE) of 13.1%, far outperforming the ungrafted MnO3. Density functional theory calculations revealed that the Fe sites are major activation centers along the alternating pathway.  相似文献   
10.
学习不仅仅是自然科学知识的学习,更是社会科学、民族文化、正确人生观和价值观的形成过程,“课程思政”无疑正是实现该目标的捷径,它是当前高等院校思想政治教育的新模式。如何提升学生解决“复杂工程问题”的能力成为高校开展工程教育和“新工科”的难点和重点,而课程思政正是培养学生解决“复杂工程问题”中所需要的非技术因素的重要途径。“自动控制系统工程设计”是自动化专业高年级学生的一门专业课,当前关于“课程思政”的论述是指导思想居多、实施经验以及案例设计较少,针对该问题以“自动控制系统工程设计”为例,详细给出了“课程思政”教学案例的具体实施过程,对同类课程提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号