首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47141篇
  免费   4365篇
  国内免费   1825篇
电工技术   1003篇
综合类   2480篇
化学工业   18716篇
金属工艺   1411篇
机械仪表   1753篇
建筑科学   1885篇
矿业工程   647篇
能源动力   3498篇
轻工业   8096篇
水利工程   319篇
石油天然气   2282篇
武器工业   234篇
无线电   2134篇
一般工业技术   5816篇
冶金工业   1214篇
原子能技术   748篇
自动化技术   1095篇
  2024年   209篇
  2023年   855篇
  2022年   1432篇
  2021年   1877篇
  2020年   1824篇
  2019年   1803篇
  2018年   1490篇
  2017年   1707篇
  2016年   1721篇
  2015年   1638篇
  2014年   2588篇
  2013年   3003篇
  2012年   3393篇
  2011年   3414篇
  2010年   2498篇
  2009年   2480篇
  2008年   2124篇
  2007年   2758篇
  2006年   2377篇
  2005年   2148篇
  2004年   1788篇
  2003年   1621篇
  2002年   1332篇
  2001年   1154篇
  2000年   1057篇
  1999年   947篇
  1998年   756篇
  1997年   658篇
  1996年   499篇
  1995年   445篇
  1994年   358篇
  1993年   321篇
  1992年   258篇
  1991年   160篇
  1990年   120篇
  1989年   79篇
  1988年   81篇
  1987年   50篇
  1986年   44篇
  1985年   54篇
  1984年   47篇
  1983年   32篇
  1982年   26篇
  1981年   22篇
  1980年   25篇
  1979年   5篇
  1978年   7篇
  1976年   6篇
  1974年   4篇
  1951年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Prognostics and health management of proton exchange membrane fuel cell (PEMFC) systems have driven increasing research attention in recent years as the durability of PEMFC stack remains as a technical barrier for its large-scale commercialization. To monitor the health state during PEMFC operation, digital twin (DT), as a smart manufacturing technique, is applied in this paper to establish an ensemble remaining useful life prediction system. A data-driven DT is constructed to integrate the physical knowledge of the system and a deep transfer learning model based on stacked denoising autoencoder is used to update the DT with online measurement. A case study with experimental PEMFC degradation data is presented where the proposed data-driven DT prognostics method has applied and reached a high prediction accuracy. Furthermore, the predicted results are proved to be less affected even with limited measurement data.  相似文献   
12.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
13.
目的建立超高效液相色谱-串联质谱法同时测定糕点中6种常用合成甜味剂的分析方法。方法选用超纯水作为提取溶剂,涡旋和超声提取后,低温离心,取部分上清液加入正己烷除脂,Waters Atlantis■T3色谱柱、甲醇-5 mmol/L甲酸铵(含0.1%甲酸)作为流动相、亲水亲脂平衡型固相萃取柱HLB(hydrophile-lipophile balance)净化。结果6种甜味剂在质量浓度为10~200 ng/mL的曲线范围内呈良好线性关系,相关系数r均大于0.999,平均加标回收率在85.0%-98.2%之间,相对平均偏差(relative standard deviation,RSD)为1.3%~6.7%。结论该方法具有前处理简单、灵敏度高、检测速度快等优点,适合糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、阿力甜、纽甜的检测,但不适用于安赛蜜的检测。  相似文献   
14.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
15.
The low performance of open-cathode proton-exchange-membrane fuel cells (OCPEMFCs) is attributed to the low-humidity ambient air supplied to the cathode using electric fans. To improve the OCPEMFC performance, this paper proposes a novel humidification method by collecting water purged from the anode and supplying it to the open cathode. The OCPEMFC performance is evaluated at various humidifier distances from the cathode inlet, and it is compared with that where no humidifier is used when the OCPEMFC operates under three different current levels of 1, 5, and 8 A. The results show that the novel design improves the stack power, and optimal performance is achieved at a humidifier distance of 2 cm. The energy efficiency achieves an improvement between 1.4% and 1.8% when a humidifier is used.  相似文献   
16.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
17.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
18.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   
19.
In our previous work, phosphorylated chitosan was modified through polymer blending with poly(vinyl alcohol) (PVA) polymer to produce N-methylene phosphonic chitosan/poly(vinyl alcohol) (NMPC/PVA) composite membranes. The aim of this work is to further investigate the effects of a propylammonium nitrate (PAN) ionic liquid and/or silicon dioxide (SiO2) filler on the morphology and physical properties of NMPC/PVA composite membranes. The temperature-dependent ionic conductivity of the composite membranes with various ionic liquid and filler compositions was studied by varying the loading of PAN ionic liquid and SiO2-PAN filler in the range of 5–20 wt%. As the loading of PAN ionic liquid increased in the NMPC/PVA membrane matrix, the ionic conductivity value also increased with the highest value of 0.53 × 10?3 S cm?1 at 25 °C and increased to 1.54 × 10?3 S cm?1 at 100 °C with 20 wt% PAN. The NMPC/PVA-PAN (20 wt%) composite membrane also exhibited the highest water uptake and ion exchange capacity, with values of 60.5% and 0.60 mequiv g?1, respectively. In addition, in the single-cell performance test, the NMPC/PVA-PAN (20 wt%) composite membrane displayed a maximum power density, which was increased by approximately 14% compared to the NMPC/PVA composite membrane with 5 wt% SiO2-PAN. This work demonstrated that modified NMPC/PVA composite membranes with ionic liquid PAN and/or SiO2 filler showed enhanced performance compared with unmodified NMPC/PVA composite membranes for proton exchange membrane fuel cells.  相似文献   
20.
Proton exchange membrane fuel cells (PEMFCs) durability has been severely hindered by carbon support poor stability in the cathodic Pt-based catalyst. Herein, a high-surface-area nitrogen-doped graphitic nanocarbon (N-G-CA) with mesopores is developed as Pt support to address PEMFCs durability challenge. Resorcinol-formaldehyde aerogel pyrolyzed carbon aerogel is selected as N-G-CA raw material. Nitrogen atoms are introduced into carbon aerogel via NH3 heat treatment. Then, nitrogen-doped carbon aerogel is transferred into N-G-CA via heating together with transition-metal salts (one of FeCl3, FeCl2, CoCl2, or MnCl2, etc.) at 1200 °C. As ORR catalyst, Pt/N-G-CA half-wave potential only lost 10 mV, after 30, 000 cycles accelerated aging test in the rotating-desk-electrode. Only 12 mV voltage loss at 1.5 A/cm2 is observed, after 5, 000 cycles for membrane electrode. Pt/N-G-CA exhibits superior durability and activity than commercial Pt/C. High durability of Pt/N-G-CA is due to N-G-CA high graphitization extent, as well as the interactions between doping nitrogen and Pt. N-G-CA is promising as stable support for durable Pt-based catalysts in PEMFCs, thanks to enhanced carbon corrosion resistance, uniformly dispersed Pt, and strong support-metals interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号