首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18382篇
  免费   33篇
  国内免费   139篇
电工技术   139篇
综合类   157篇
化学工业   5069篇
金属工艺   834篇
机械仪表   478篇
建筑科学   503篇
矿业工程   51篇
能源动力   1827篇
轻工业   582篇
水利工程   45篇
石油天然气   487篇
武器工业   9篇
无线电   1329篇
一般工业技术   3893篇
冶金工业   746篇
原子能技术   219篇
自动化技术   2186篇
  2024年   134篇
  2023年   1100篇
  2022年   556篇
  2021年   915篇
  2020年   988篇
  2019年   885篇
  2018年   842篇
  2017年   922篇
  2016年   1025篇
  2015年   1050篇
  2014年   1487篇
  2013年   2988篇
  2012年   650篇
  2011年   667篇
  2010年   613篇
  2009年   513篇
  2008年   413篇
  2007年   415篇
  2006年   349篇
  2005年   272篇
  2004年   265篇
  2003年   224篇
  2002年   216篇
  2001年   171篇
  2000年   127篇
  1999年   113篇
  1998年   103篇
  1997年   84篇
  1996年   87篇
  1995年   68篇
  1994年   75篇
  1993年   45篇
  1992年   31篇
  1991年   17篇
  1990年   17篇
  1989年   13篇
  1988年   16篇
  1987年   12篇
  1986年   7篇
  1985年   12篇
  1984年   20篇
  1983年   17篇
  1982年   14篇
  1980年   4篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Modern liquid crystal displays (LCDs) require novel technologies, such as new alignment methods to eliminate alignment layers, fast response and long operation time. To this end, we report an overview of recent efforts in LCD technologies devoted to realize more display modes having no alignment layer, faster switching time and low battery consumption. In particular, we overview recent advances on the liquid crystals (LCs) alignment for display applications, which includes superfine nanostructures, polymeric microchannels and polymer stabilized LCs. Furthermore, we analyze the main optical and electro-optical properties of new generation LCDs displays addressing a particular attention to LCs blue phase hosting gold nanoparticles. Moreover, we focus on the progress of electrofluidic displays, which demonstrates characteristics that are similar to LCDs, with attention on various pixel designs, operation principles and possible future trends of the technology.  相似文献   
12.
The micromechanics models for composites usually underpredict the tensile strength of polymer nanocomposites. This paper establishes a simple model based on Kelly–Tyson theory for tensile strength of polymer/CNT nanocomposites assuming the effect of interphase between polymer and CNT. In addition, Pukanszky model is joined with the suggested model to calculate the interfacial shear strength (τ), interphase strength (σi) and critical length of CNT (Lc).The proposed approach is applied to calculate τ, σi and Lc for various samples from recent literature. It is revealed that the experimental data are well fitted to calculations by new model which confirm the important effect of interphase on the properties of nanocomposites. Moreover, the derived equations demonstrate that dissimilar correlations are found between τ and B (from Pukanszky model) as well as Lc and B. It is shown that a large B value obtained by strong interfacial adhesion between polymer and CNT is adequate to reduce Lc in polymer/CNT nanocomposites.  相似文献   
13.
Spinel LiSr0·1Cr0·1Mn1·8O4 was synthesised by high temperature solid state method in order to enhance the electrochemical performance. The LiSr0·1Cr0·1Mn1·8O4 (LSCMO) materials were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The XRD and SEM studies confirm that LSCMO had spinel crystal structure with a space group of Fd3m, and the particle of LSCMO shows irregular shape. The cyclic voltammetry data illustrated that the heavy current charge–discharge performance of LMO was improved by Sr2+ and Cr3+ doping. The galvanostatic charge–discharge of LSCMO cathode materials was measured at 1, 5, 10 and 20 C. The results indicated that LSCMO improved the capacity retention.  相似文献   
14.
This study demonstrates the application of an improved Evolutionary optimization Algorithm (EA), titled Multi-Objective Complex Evolution Global Optimization Method with Principal Component Analysis and Crowding Distance Operator (MOSPD), for the hydropower reservoir operation of the Oroville–Thermalito Complex (OTC) – a crucial head-water resource for the California State Water Project (SWP). In the OTC's water-hydropower joint management study, the nonlinearity of hydropower generation and the reservoir's water elevation–storage relationship are explicitly formulated by polynomial function in order to closely match realistic situations and reduce linearization approximation errors. Comparison among different curve-fitting methods is conducted to understand the impact of the simplification of reservoir topography. In the optimization algorithm development, techniques of crowding distance and principal component analysis are implemented to improve the diversity and convergence of the optimal solutions towards and along the Pareto optimal set in the objective space. A comparative evaluation among the new algorithm MOSPD, the original Multi-Objective Complex Evolution Global Optimization Method (MOCOM), the Multi-Objective Differential Evolution method (MODE), the Multi-Objective Genetic Algorithm (MOGA), the Multi-Objective Simulated Annealing approach (MOSA), and the Multi-Objective Particle Swarm Optimization scheme (MOPSO) is conducted using the benchmark functions. The results show that best the MOSPD algorithm demonstrated the best and most consistent performance when compared with other algorithms on the test problems. The newly developed algorithm (MOSPD) is further applied to the OTC reservoir releasing problem during the snow melting season in 1998 (wet year), 2000 (normal year) and 2001 (dry year), in which the more spreading and converged non-dominated solutions of MOSPD provide decision makers with better operational alternatives for effectively and efficiently managing the OTC reservoirs in response to the different climates, especially drought, which has become more and more severe and frequent in California.  相似文献   
15.
The light scattering, harvesting and adsorption effects in dye-sensitized solar cells (DSSCs) are studied by preparation of coated carbon nanotubes (CNTs) with TiO2 and Zr-doped TiO2 nanoparticles in the forms of mono- and double-layer cells. X-ray diffraction (XRD) analysis reveals that the phase composition of Zr-doped TiO2 electrode is a mixture of anatase and rutile phases with major rutile content, whereas it is the same mixture with major anatase content for coated CNTs with TiO2. Furthermore, the average crystallite size of Zr-doped TiO2 electrode is slightly decreased with Zr introduction. Field emission scanning electron microscope (FE-SEM) images show that the porosity of Zr-doped TiO2 electrodes is higher than that of undoped electrode, enhancing dye adsorption. UV–visible spectroscopy analysis reveals that the absorption onset of Zr-doped TiO2 electrodes is slightly shifted to longer wavelength (the red-shift) in comparison with that of undoped TiO2 electrode. Moreover, the band gap energy of TiO2 nanoparticles is decreased by Zr introduction, enhancing light absorption. It is found that electron injection of monolayer TiO2 electrode is improved by introduction of 0.025 mol% Zr, resulted in enhancement of its power conversion efficiency (PCE) up to 6.81% compared with 6.17% for pure TiO2 electrode. Moreover, electron transport and light scattering are enhanced by incorporation of 0.025 wt% coated CNTs with TiO2 in the over-layer of double layer electrode. Therefore, double layer solar cell composed of 0.025 mol% Zr-doped TiO2 nanoparticles as the under-layer and mixtures of these nanoparticles and 0.025 wt% coated CNTs with TiO2 as the over-layer shows the highest PCE of 8.19%.  相似文献   
16.
The morphology of the photoactive layer critically affects the performance of the bulk heterojunction polymer solar cells (PSCs). To control the morphology, we introduced a hydrophobic fluoropolymer polyvinylidene fluoride (PVDF) as nonvolatile additive into the P3HT:PCBM active layer. The effect of PVDF on the surface and the bulk morphology were investigated by atomic force microscope and transmission electron microscopy, respectively. Through the repulsive interactions between the hydrophilic PCBM and the hydrophobic PVDF, much more uniform phase separation with good P3HT crystallinity is formed within the active layer, resulting enhanced light harvesting and improved photovoltaic performance in conventional devices. The PCE of the conventional device can improve from 2.40% to 3.07% with PVDF additive. The PVDF distribution within the active layer was investigated by secondary ion mass spectroscopy, confirming a bottom distribution of PVDF. Therefore, inverted device structure was designed, and the PCE can improve from 2.81% to 3.45% with PVDF additive. Our findings suggest that PVDF is a promising nonvolatile processing additive for high performance polymer solar cells.  相似文献   
17.
For the first time, we present the unique features exhibited by power 4H–SiC UMOSFET in which N and P type columns (NPC) in the drift region are incorporated to improve the breakdown voltage, the specific on-resistance, and the total lateral cell pitch. The P-type column creates a potential barrier in the drift region of the proposed structure for increasing the breakdown voltage and the N-type column reduces the specific on-resistance. Also, the JFET effects reduce and so the total lateral cell pitch will decrease. In the NPC-UMOSFET, the electric field crowding reduces due to the created potential barrier by the NPC regions and causes more uniform electric field distribution in the structure. Using two dimensional simulations, the breakdown voltage and the specific on-resistance of the proposed structure are investigated for the columns parameters in comparison with a conventional UMOSFET (C-UMOSFET) and an accumulation layer UMOSFET (AL-UMOSFET) structures. For the NPC-UMOSFET with 10 µm drift region length the maximum breakdown voltage of 1274 V is obtained, while at the same drift region length, the maximum breakdown voltages of the C-UMOSFET and the AL-UMOSFET structures are 534 and 703 V, respectively. Moreover, the proposed structure exhibits a superior specific on-resistance (Ron,sp) of 2  cm2, which shows that the on-resistance of the optimized NPC-UMOSFET are decreased by 56% and 58% in comparison with the C-UMOSFET and the AL-UMOSFET, respectively.  相似文献   
18.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
19.
Using a comprehensive set of drop weight impact test data (h50) newly compiled from literature for 308 materials, a recent approach to predict impact sensitivities of nitro compounds is generalized to most explosive substances of interest. Compared to previous ones, this procedure is more thoroughly validated and exhibits a good predictive value. Furthermore, it yields new insight into the physical mechanisms involved, explaining for instance the unexpected desensitization of some oxygen-deficient triazoles upon nitration.  相似文献   
20.
The main aim of this work is dual computer analysis of probabilistic coefficients for the homogenized tensor of the polymer filled with the rubber particles having randomized Poisson ratios of both constituents. The major issue is to verify an influence of a randomness in rubber Poisson ratio close to the compressibility limit on the uncertainty of the effective tensor probabilistic characteristics. Probabilistic analysis presented here is carried out using mainly the stochastic perturbation technique provided by the common application of the traditional FEM commercial code ABAQUS and the symbolic computations package MAPLE. This FEM-based technique employs polynomial response function of the optimum order recovered from the weighted least squares method and following a set of deterministic solutions obtained for various values of the randomized input parameter. Optimization procedure is released entirely into a symbolic environment, where maximization of the correlation factor together with minimization of the fitting variance and approximation error are applied. Homogenization technique consists in equating of deformation energies for the real composite and the artificial one characterized by the effective elasticity tensor with uncertainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号