首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   2篇
  国内免费   4篇
综合类   3篇
化学工业   32篇
金属工艺   77篇
机械仪表   3篇
能源动力   11篇
轻工业   3篇
无线电   26篇
一般工业技术   36篇
冶金工业   4篇
原子能技术   5篇
自动化技术   3篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   8篇
  2016年   3篇
  2015年   10篇
  2014年   12篇
  2013年   8篇
  2012年   4篇
  2011年   7篇
  2010年   8篇
  2009年   16篇
  2008年   6篇
  2007年   12篇
  2006年   10篇
  2005年   2篇
  2004年   9篇
  2003年   5篇
  2002年   9篇
  2001年   5篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
41.
N-type Mg2Si0.58Sn0.42 − xBix (0 ≤ x ≤ 0.015) compounds were prepared by melting the element metals in sealed tantalum tubes followed by hot pressing. The XRD results indicate that all samples are composites containing both major magnesium silicide solution phase and minor magnesium stannide solution phase. The Hall measurements show that the carrier concentrations and electrical conductivities increase with the increase of Bi doping amount. It was found that the intrinsic excitation shifts to high temperature due to Bi doping, which leads to the increase of the peak-temperatures of the Seebeck coefficient. The maximum dimensionless figure of merit is 0.65 at 700 K for the sample x = 0.015.  相似文献   
42.
采用双阴极等离子溅射技术在TC4合金表面制备了纳米晶NiSi2/Ti5Si3复合涂层。利用XRD、SEM和TEM研究了复合涂层的微观组织特征,利用纳米压入和声发射划痕仪考察了复合涂层的硬度、弹性模量以及涂层与基体的结合力。结果表明:纳米晶NiSi2/Ti5Si3复合涂层由外层厚度为7 μm的NiSi2沉积层和其下3 μm厚的Ti5Si3扩散层组成,沉积层的平均晶粒尺寸约为40 nm,而扩散层的平均晶粒尺寸约为70 nm,且存在大量的栅栏状孪晶。纳米晶NiSi2/Ti5Si3复合涂层硬度呈梯度分布,与基体具有较高的结合强度,其结合力为49 N。纳米晶NiSi2/Ti5Si3复合涂层的比磨损率较TC4合金降低一个数量级以上,且对载荷和温度不具敏感性。与TC4合金相比,纳米晶NiSi2/Ti5Si3复合涂层的腐蚀电流密度降低了两个数量级,且具有更大的容抗弧值  相似文献   
43.
The oxidation behavior of a (Mo,W)Si2 composite with boride addition was examined at 300–1000 °C for 24 h in dry O2. The oxidation kinetics was studied using a thermobalance, and the oxide scales were analyzed using a combination of electron microscopy (SEM/EDX, FIB, BIB) and XRD. Accelerated oxidation was found to occur between 500 °C and 675 °C, with a peak mass gain at 625 °C. The rapid oxidation is attributed to the vaporization of molybdenum oxide that leaves a porous and poorly protective silica layer behind. At higher temperature (700–1000 °C) a protective scale forms, consisting of a dense SiO2/B2O3 glass.  相似文献   
44.
Silicon is commercially by far the most important semiconductor, however, because silicon has an indirect band gap it would initially appear to be unsuitable for optoelectronic applications. A major research challenge is, therefore, to achieve high intensity light emission from silicon and to engineer active and passive optical structures within it. This paper examines the potential of semiconducting silicides (principally, βFeSi2 and Ru2Si3) for silicon-based optoelectronic applications. It traces the history of the subject from the first photoluminescence spectrum from βFeSi2 to a working LED which uses βFeSi2 precipitates as a route for fast radiative recombination. Recent results on semiconducting Ru2Si3 are also reported, which show, for the first time, that this material can be fabricated by high dose ion implantation. They also reveal a direct band gap of 0.91 eV. The future for semiconducting silicides is examined and, although there are still barriers to overcome — the future looks bright.  相似文献   
45.
金属硅化物及其复合材料的研究进展   总被引:2,自引:1,他引:1  
从金属硅化物的物理及力学性能出发指出了影响其应用的最大障碍是室温脆性,分析了金属硅化物的强韧化手段和机理,认为复合化是目前有效的强韧化方法,最后列举了金属硅化物常用的几种制备技术及其各自的优势和缺点,并且以MoSi_2为例综述了金属硅化物的应用现状.  相似文献   
46.
Ternary alloying of Mo_5Si_3 with Zr, Ti, Co and V   总被引:2,自引:1,他引:1  
1 INTRODUCTIONSilicidesareusedasvariousprotectivecoatingsa gainstwear ,corrosionandoxidation ,andasintegrat edcircuitfilmsbecauseoftheirhighhardness ,highelectricalandthermalconductivityandgoodoxidationresistanceathightemperatures .Inparticular ,MoSi2isputi…  相似文献   
47.
Abstract

Nanoscale Ni – Si thin films are widely used in commercial microelectronic devices because of their promising electrical properties as well as their chemical stability. However, their application in corrosive environment has not been frequently addressed in the literature. In this study, amorphous Ni0.66Si0.33, Ni0.40Si0.60, and Ni0.20Si0.80 thin films are prepared on AISI 304L stainless steel by means of ion-beam sputter (IBS) deposition and their corrosion behaviour is studied using potentiodynamic polarisation measurements. The electrochemical measurements were conducted in 0.05M HCl solution at room temperature. By means of optical interferometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), the surface morphology and chemical composition of the thin films were examined before and after the electrochemical measurement. The evaluated results showed that the Ni–Si thin films may exhibit improved corrosion resistance over the 304L substrate provided that Si content is high enough to facilitate the formation of a Si-rich passive film.  相似文献   
48.
During the past decade, many research groups have described catalytic methods for 1,2-carboboration, allowing access to structurally complex organoboronates from alkenes. Various transition metals, especially copper, palladium, and nickel, have been widely used in these reactions. This review summarizes advances in this field, with a special focus on the catalytic cycles involved in different metal-catalyzed carboboration reactions, as well as the regio- and stereochemical consequences of the underlying mechanisms. 1,2-Carboboration of other unsaturated systems, such as alkynes and allenes, is outside of the scope of this review.  相似文献   
49.
《Ceramics International》2020,46(1):622-628
Establishing hetero-junctions are widely regarded as an efficient strategy in the area of photocatalysis. In this work, the series of hybrid CuO/ZrO2/Y2O3 compounds were synthesized by self-propagating combustion of Cu60Zr40-xYx (x = 0, 5, 10, 15) metallic glasses. The combustion process is self-sustaining and can be efficiently regulated with the ratio of Zr/Y. The synthesized products are irregularly shaped and uniformly dispersed with a particle size of approximately 100 nm–5 μm. The presence of Y2O3 in the hybrid oxides stabilizes the ZrO2 phase and narrows the bandgap energy of as-synthesized powders. For the photocatalytic ability in degrading Methylene Blue (MB), it was demonstrated that the optimal addition of yttrium in the precursor is approximately 10 at% to the formation of best photocatalysts in the current work. Our findings not only provide the new approach to synthesize highly photocatalytic hybrid metal oxides, but also extend the functional applications of amorphous alloys.  相似文献   
50.
In this work, we studied effects of Ni2O3 and Co2O3 doping on crystal structures, microstructures, orthorhombic and tetragonal phase transition temperature (To-t), and electrical properties of [Li0.06(Na0.57K0.43)0.94][Ta0.05(Sb0.06Nb0.94)0.95]O3 (LNKTSN) lead-free ceramics. The experimental results showed that the Ni2O3 addition with appropriate amount could shift the To-t downwards to the room temperature, and thus obviously increasing the room-temperature piezoelectric coefficient (d33), dielectric coefficient (εr) and electromechanical coupling coefficient (kp) of the LNKTSN ceramics. These were consistent with previous experimental results obtained in Fe2O3 doped LNKTSN ceramics. On the contrary, Co3+ doping shifted continuously the To-t upward and deteriorated obviously piezoelectric properties of LNKTSN ceramics. Fe, Co and Ni had similar ion radii and were expected to result in the same (donor or acceptor) doping effects on electrical properties of LNKTSN ceramics. The different doping effects between Co3+ (deterioration) and Ni3+ or Fe3+ (improvement) on the electrical properties of LNKTSN ceramics suggested that the coexistence of orthorhombic and tetragonal phases at room temperature due to downward shift of To-t, rather than ion doping (donor or acceptor doping) effects was the main cause for enhanced room-temperature piezoelectric properties. This conclusion can be extended to all KNN-based materials in general, thus offering principle guide for future development of new lead-free materials with good piezoelectric properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号