首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375477篇
  免费   30748篇
  国内免费   19870篇
电工技术   21947篇
技术理论   54篇
综合类   47369篇
化学工业   45580篇
金属工艺   16918篇
机械仪表   21124篇
建筑科学   55520篇
矿业工程   19029篇
能源动力   11981篇
轻工业   19797篇
水利工程   17640篇
石油天然气   21099篇
武器工业   3710篇
无线电   26600篇
一般工业技术   29381篇
冶金工业   19961篇
原子能技术   3630篇
自动化技术   44755篇
  2024年   1101篇
  2023年   3899篇
  2022年   7623篇
  2021年   9170篇
  2020年   9312篇
  2019年   7791篇
  2018年   7314篇
  2017年   8963篇
  2016年   10470篇
  2015年   11764篇
  2014年   21522篇
  2013年   19406篇
  2012年   25436篇
  2011年   27415篇
  2010年   21516篇
  2009年   22338篇
  2008年   20793篇
  2007年   26523篇
  2006年   25016篇
  2005年   21939篇
  2004年   18572篇
  2003年   16749篇
  2002年   13929篇
  2001年   11666篇
  2000年   9849篇
  1999年   8030篇
  1998年   6192篇
  1997年   5349篇
  1996年   4732篇
  1995年   4015篇
  1994年   3564篇
  1993年   2557篇
  1992年   2281篇
  1991年   1701篇
  1990年   1487篇
  1989年   1222篇
  1988年   984篇
  1987年   645篇
  1986年   482篇
  1985年   432篇
  1984年   396篇
  1983年   293篇
  1982年   271篇
  1981年   192篇
  1980年   192篇
  1979年   126篇
  1978年   73篇
  1977年   77篇
  1975年   64篇
  1959年   63篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
11.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
12.
《Ceramics International》2022,48(6):8297-8305
Pure and Sn/Fe co-doped (0.2 at.% Sn and 0.6 at.% Fe, 0.6 at.% Sn and 0.2 at.% Fe, 1.0 at.% Sn and 1.0 at.% Fe) TiO2 nanoparticles were synthesized via a sol-gel method and subsequently calcined at different temperatures. Furthermore, the particles were analyzed by TG-DSC, XRD, TEM, HRTEM, EDS, SAED and UV–Vis for investigating the influences of dopant and calcination temperature on the thermal effect, composition, morphology, energy band gap (Eg) and the degradation efficiency of methyl orange (MO) under various light irradiations respectively. Results indicated that Sn/Fe co-doping inhibited the crystallization transformation from anatase to rutile phase of TiO2 and decreased the Eg. The increased calcination temperature and Sn/Fe co-doped effect brought about the abnormal grain growth of TiO2 nanoparticles. 0.6 at.% Sn/0.2 at.% Fe and 1.0 at.% Sn/1.0 at.% Fe co-doped TiO2 nanoparticles presented better photocatalytic performance than pure and 0.2 at.% Sn/0.6 at.% Fe co-doped TiO2 nanoparticles under visible light irradiation mainly due to the decreased Eg. On the contrary, 0.2 at.% Sn and 0.6 at.% Fe co-doped TiO2 nanoparticles calcined at 650 °C showed the most excellent photocatalytic performance under UV light irradiation, which was about twice as large as that of pure TiO2 possibly due to the formed hybrid structure of anatase and rutile phase as well as the h+-mediated decomposition pathway.  相似文献   
13.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
14.
15.
Ni–Co/Mg(Al)O alloy catalysts with different Co/Ni molar ratios have been prepared from Ni- and Co-substituted Mg–Al hydrotalcite-like compounds (HTlcs) as precursors and tested for dry reforming of methane. The XRD characterization shows that Ni–Co–Mg–Al HTlcs are decomposed by calcination into Mg(Ni,Co,Al)O solid solution, and by reduction finely dispersed alloy particles are formed. H2-TPR indicates a strong interaction between nickel/cobalt oxides and magnesia, and the presence of cobalt in Mg(Ni,Co,Al)O enhances the metal-support interaction. STEM-EDX analysis reveals that nickel and cobalt cations are homogeneously distributed in the HTlcs precursor and in the derived solid solution, and by reduction the resulting Ni–Co alloy particles are composition-uniform. The Ni–Co/Mg(Al)O alloy catalysts exhibit relatively high activity and stability at severe conditions, i.e., a medium temperature of 600 °C and a high space velocity of 120000 mL g?1 h?1. In comparison to monometallic Ni catalyst, Ni–Co alloying effectively inhibits methane decomposition and coke deposition, leading to a marked enhancement of catalytic stability. From CO2-TPD and TPSR, it is suggested that alloying Ni with Co favors the CO2 adsorption/activation and promotes the elimination of carbon species, thus improving the coke resistance. Furthermore, a high and stable activity with low coking is demonstrated at 750 °C. The hydrotalcite-derived Ni–Co/Mg(Al)O catalysts show better catalytic performance than many of the reported Ni–Co catalysts, which can be attributed to the formation of Ni–Co alloy with uniform composition, proper size, and strong metal-support interaction as well as the presence of basic Mg(Al)O as support.  相似文献   
16.
《Journal of dairy science》2022,105(3):2408-2425
Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (FPED). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.  相似文献   
17.
18.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
19.
The sensitivity of a monitoring scheme depends on many factors including the variance of the charting statistic which is very important in the computation of the control limits. This paper discusses the computation of the variance of the recently proposed hybrid homogeneously weighted moving average (HHWMA) X¯ scheme which was based on an incorrect assumption. The correct variance is used to evaluate the run-length characteristics of the HHWMA X¯ scheme. It is observed that the incorrect variance has a significant impact on the sensitivity (or performance) of the HHWMA X¯ scheme.  相似文献   
20.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号