首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170343篇
  免费   23831篇
  国内免费   15804篇
电工技术   12410篇
技术理论   8篇
综合类   20051篇
化学工业   23497篇
金属工艺   12213篇
机械仪表   12494篇
建筑科学   15553篇
矿业工程   5646篇
能源动力   6700篇
轻工业   5937篇
水利工程   9032篇
石油天然气   8035篇
武器工业   2605篇
无线电   11771篇
一般工业技术   18069篇
冶金工业   7282篇
原子能技术   1441篇
自动化技术   37234篇
  2024年   1053篇
  2023年   3065篇
  2022年   5447篇
  2021年   6636篇
  2020年   6781篇
  2019年   5731篇
  2018年   5626篇
  2017年   6883篇
  2016年   7694篇
  2015年   7934篇
  2014年   10354篇
  2013年   11097篇
  2012年   12487篇
  2011年   13126篇
  2010年   10225篇
  2009年   10656篇
  2008年   10339篇
  2007年   11963篇
  2006年   10612篇
  2005年   9032篇
  2004年   7450篇
  2003年   6415篇
  2002年   5096篇
  2001年   4307篇
  2000年   3708篇
  1999年   2826篇
  1998年   2419篇
  1997年   1978篇
  1996年   1799篇
  1995年   1541篇
  1994年   1275篇
  1993年   902篇
  1992年   776篇
  1991年   594篇
  1990年   496篇
  1989年   475篇
  1988年   232篇
  1987年   169篇
  1986年   116篇
  1985年   123篇
  1984年   127篇
  1983年   67篇
  1982年   87篇
  1981年   35篇
  1980年   56篇
  1979年   53篇
  1978年   19篇
  1974年   11篇
  1959年   20篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
12.
《Ceramics International》2022,48(1):495-502
Preparation and growth mechanism of anodization of Ti and Al has been widely concerned for two decades, but the research on anodic ZrO2 is relatively lacking. In this paper, anodic TiO2 and ZrO2 nanotubes were prepared in glycerol electrolyte containing 0.35 M NH4F and 4 vol% H2O under different anodizing voltages. We had successfully prepared the anodic ZrO2 nanotubes (AZNTs) with a complete top and a “bulb” at the bottom under 60 V, and with the increase of the applied anodizing voltage, the “bulb” cavity also increased. However, under the same anodizing conditions, the surface of anodic TiO2 nanotubes (ATNTs) is a cluster of nano-tip morphology, and the bottom of the ATNTs is a conventional hemisphere shape. In addition, both AZNTs and porous anodic zirconia (PAZ) were found to coexist in the anodic ZrO2 layer prepared at 60 V. Here, we used the oxygen bubble model and ionic current and electronic current theories to analyze the reason of the special morphology. It is confirmed that the porous anodic oxides are actually evolved from nanotubes. In other words, the structure is essentially the same.  相似文献   
13.
The aim of this study was to develop high dielectric constant flexible polymers with a highly efficient and cost‐effective approach using acrylonitrile butadiene rubber (NBR) as the polymer matrix and barium titanate (BT) as the high dielectric constant filler. The BT powder was synthesized with a solid‐state reaction and was characterized using a particle size analyzer, XRD, SEM and Fourier transform infrared spectroscopy. NBR/BT composites were fabricated using an internal mixer with various BT loadings up to 160 phr. The influence of BT loading on the cure characteristics and mechanical, dynamic mechanical, thermal, dielectric and morphological properties was determined. The incorporation of BT in the NBR matrix shortened scorch time and increased delta torque. The mechanical properties, thermal stability and dielectric constant were greatly improved and increased with BT loading. The results suggest that the reinforcement effect was achieved due to strong hydrogen bonding or polar–polar interactions between NBR matrix and BT filler. This is further corroborated by the good dispersion of BT filler in the NBR matrix observed with SEM imaging. These findings can be applied to produce high‐performance dielectric elastomers. © 2020 Society of Industrial Chemistry  相似文献   
14.
为缓解我国水、能源和粮食资源紧张问题,促进资源可持续利用,构建水-能源-粮食系统,利用耦合协调度模型对我国的30个省(自治区、直辖市)进行测算,并利用空间杜宾模型分析主要影响因素。结果表明:2003—2017年,我国能源、粮食评价[JP]指数高于水资源评价指数,系统综合评价指数逐年递增;大部分省份耦合协调度处于初级协调水平且呈现逐年上升的态势,个别省份耦合协调度濒临失调;耦合协调度空间自相关性较强,虽有明显波动,但是呈现逐年加强的态势;影响耦合协调度的主要因素有从业人口数、固定资产投资额、人均生产总值、人口总数、[JP]文盲人口占比、工业污染排放、城镇化。  相似文献   
15.
With excellent micromixing characteristic of rotating packed bed (RPB), many nanoparticles with small average size, narrower distribution and good morphology had been successfully and continuously prepared. To reveal complex crystal process, an empirical model were developed to simulate nano-ZnO by considering mass changed, population balance equation, growth rate G, nucleation rate B, drop sizes Di, and resident time t. The predicted particle sizes were shown good agreement with experimental data with error of ±10%. Therefore, it was further adopted to predict the effects of rotating speed, liquid flow rate and reactant concentration on the mean particle size. To look more deeply insight in this process, their contribution ratios were further analyzed. The proposed empirical models were of great helpful to obtain suitable operation conditions for preparing much better properties of nanoparticles with fewer experiments. It was also beneficial to produce other nanoparticles in RPB.  相似文献   
16.
In this study, the hydraulic reactivity and cement formation of baghdadite (Ca3ZrSi2O9) was investigated. The material was synthesized by sintering a mixture of CaCO3, SiO2, and ZrO2 and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown by X-ray powder diffraction (XRD) and laser diffraction measurements. Baghdadite cements were formed by the addition of water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were found to be ~2 MPa after 3-day setting for a 24-h ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of set cements with a preferred dissolution of calcium and only marginal release of zirconium ions. Cement formation occurs under alkaline conditions, whereas the unground raw powder leads to a pH of 11.9 during setting, while prolonged grinding increased pH values to approximately 12.3.  相似文献   
17.
As hydrogen refueling stations become increasingly common, it is clear that a high level of economic efficiency and safety is crucial to promoting their use. One way to reduce costs is to use a simple orifice instead of an excess flow valve, which Japanese safety regulations have identified as a safety device. However, there is concern about its effect on refueling time and on risk due to hydrogen leakage. To clarify the effect, we did a study of model-based refueling time evaluation and quantitative risk assessment for a typical refueling station. This study showed that an orifice is an effective alternative safety device. The increase in refueling time was less than 10%, based on simulations using a dynamic physical model of the station. Neither was there a significant difference in the risk between a configuration with excess flow valves and one with an orifice.  相似文献   
18.
This paper focuses on the configuration design of flexure hinges with a prescribed compliance matrix and preset rotational center position. A new method for the topology optimization of flexure hinges is proposed based on the adaptive spring model and stress constraint. The hinge optimization model is formulated by maximizing the bending displacement with a spring while optimizing the compliance matrix to a prescribed value. To avoid numerical instability, an artificial spring is used as an auxiliary calculation, and a new strategy is developed for adaptively adjusting the spring stiffness according to the prescribed compliance matrix. The maximum stress of flexure hinge is limited by using a normalized P-norm of the effective von Mises stress, and a position constraint of rotational center is proposed to predetermine the position of the rotational center. In addition, to reduce the error of the stress measurement, a simple but effective filtering method is presented to obtain a complete black-and-white design. Numerical examples are used to verify the proposed method. Topology results show that the obtained flexure hinges have the prescribed compliance matrix and preset rotational center position while also meeting the stress requirements.  相似文献   
19.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
20.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号