首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317673篇
  免费   28236篇
  国内免费   13871篇
电工技术   21083篇
技术理论   50篇
综合类   32365篇
化学工业   39083篇
金属工艺   11332篇
机械仪表   15512篇
建筑科学   45777篇
矿业工程   17008篇
能源动力   14133篇
轻工业   19076篇
水利工程   15272篇
石油天然气   16520篇
武器工业   3666篇
无线电   21752篇
一般工业技术   23356篇
冶金工业   17112篇
原子能技术   2801篇
自动化技术   43882篇
  2024年   1273篇
  2023年   3965篇
  2022年   7437篇
  2021年   9701篇
  2020年   9716篇
  2019年   7410篇
  2018年   6928篇
  2017年   8602篇
  2016年   10503篇
  2015年   11321篇
  2014年   22261篇
  2013年   19744篇
  2012年   22658篇
  2011年   25017篇
  2010年   18606篇
  2009年   19156篇
  2008年   18037篇
  2007年   21699篇
  2006年   19591篇
  2005年   17109篇
  2004年   14318篇
  2003年   12677篇
  2002年   10232篇
  2001年   8222篇
  2000年   6906篇
  1999年   5336篇
  1998年   3924篇
  1997年   3348篇
  1996年   2743篇
  1995年   2309篇
  1994年   1857篇
  1993年   1390篇
  1992年   1127篇
  1991年   796篇
  1990年   693篇
  1989年   654篇
  1988年   406篇
  1987年   302篇
  1986年   288篇
  1985年   299篇
  1984年   270篇
  1983年   221篇
  1982年   103篇
  1981年   102篇
  1980年   98篇
  1979年   58篇
  1978年   29篇
  1977年   38篇
  1959年   47篇
  1951年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
以“创新、协调、绿色、开放、共享”为内核的新发展理念,是对马克思主义发展理念的继承和发扬,极具时代精神,富含问题意识,为高校思想政治教育发展、教育教学改革实践提供了强大的理论支撑。本文以“通信原理”为例,阐述了新发展理念在课程改革中的思路和方法,实现了思想政治教育与专业基础课程有机融合,为深化高校教学改革、创新人才培养模式提供了思路。  相似文献   
12.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
13.
《Ceramics International》2022,48(9):12281-12290
Following the rapid growth of lightning technology, the development of red-emitting phosphors is effective for improving color temperature and color rendering index for w-LEDs devices. Herein, a single phased garnet phosphor with cation and polyhedron substitution modification was firstly prepared. For Mg3Gd2Ge3O12: Bi3+, Eu3+, the intensity has been remarkably improved by about 16% compared to the one without Bi3+ sensitization. The energy transfer mechanism is identified in this work. Based on cation and polyhedron substitution strategies, novel phosphors with different compositions were obtained and further modified the PL properties. With Lu3+ substitution, the bond lengths between Bi3+ ion and anion ligands are decreased and the site symmetry has been strengthened, which leads to a 21 nm blue shift when Lu3+ totally replaced Gd3+ ions. In addition, Lu3+ and [SiO4] substitution strategies both effectively increased symmetric rigid structure, which leads to a significant improvement in thermal stability, indicating the samples own great potential in optical applications This work provides a new insight to synthesis red-emitting phosphors for warm white-LEDs.  相似文献   
14.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
15.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
16.
Piperine is an alkaloid that has extensive pharmacological activity and impacts other active substances bioavailability due to inhibition of CYP450 enzymes, stimulation of amino acid transporters and P-glycoprotein inhibition. Low solubility and the associated low bioavailability of piperine limit its potential. The combination of piperine with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) causes a significant increase in its solubility and, consequently, an increase in permeability through gastrointestinal tract membranes and the blood–brain barrier. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) were used to characterize interactions between piperine and HP-β-CD. The observed physicochemical changes should be combined with the process of piperine and CD system formation. Importantly, with an increase in solubility and permeability of piperine as a result of interaction with CD, it was proven to maintain its biological activity concerning the antioxidant potential (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay), inhibition of enzymes essential for the inflammatory process and for neurodegenerative changes (hyaluronidase, acetylcholinesterase, butyrylcholinesterase).  相似文献   
17.
A new catalyst for both water reduction and oxidation, based on an infinite chain, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n, is formed by the reaction of NiCl2, 1,3-propanediamine (tn) and K3 [Fe(CN)6]. {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can electro-catalyze hydrogen evolution from a neutral aqueous buffer (pH 7.0) with a turnover frequency (TOF) of 1561 mol of hydrogen per mole of catalyst per hour (H2/mol catalyst/h) at an overpotential (OP) of 837 mV {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n also can electro-catalyze O2 production from water with a TOF of ~45 mol O2 (mol cat)?1s?1 at an OP of 591 mV. Under blue light (λ = 469 nm), together with CdS nanorods (CdS NRs) as a photosensitizer, and ascorbic acid (H2A) as a sacrificial electron donor, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can photo-catalyze hydrogen generation from an aqueous buffer (pH 4.0) with a turnover number (TON) of 11,450 mol H2 per mole of catalyst (mol of H2 (mol of cat)?1) during 10 h irradiation. The average of apparent quantum yield (AQY) is as high as 40.96% during 10 h irradiation. Studies indicate that {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n exists in two forms: a cyano-bridged chain ({[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n) in solid, and a salt ([Ni(tn)2]3 [Fe(CN)6]2) in aqueous media; Catalytic reaction occurs on the nickel center of [Ni(tn)2]2+, and the introduction of [Fe(CN)6]3- can improve the catalytic efficiency of [Ni(tn)2]2+ for H2 or O2 generation. We hope these findings can afford a new method for the design of catalysts for both water reduction and oxidation.  相似文献   
18.
KH550, KH560, CTAB, and F127 were adopted to modify silicon (Si) to improve the dispersity and stability of Si in the polyacrylonitrile/dimethyl sulfoxide (PAN/DMSO) polymer solutions. The influence of surfactants on rheological behaviors of PAN/DMSO/Si blending polymer solutions was investigated by an advanced solution and melt rotation rheometer. The homogeneity and stability were also studied. The results showed that the surfactants could change the viscosity dependence of blending polymer solutions on shear rate, temperature and storage time by increase the steric hindrance of Si. Among the four solutions, PAN/DMSO/Si blending polymer solution with F127 exhibited the lowest viscosity, activation energy and the smallest structural viscosity index and exhibited the trend close to the Newtonian fluids. Moreover, PAN/DMSO/Si blending polymer solution with F127 exhibited the best dispersity and stability, indicating its best physical properties and machinability.  相似文献   
19.
Ammonia generation was studied in the reaction between water and nitrogen-containing iron at 323 K and atmospheric pressure. Similar to metallic Fe, the interstitial compound Fe3N reduced water through Fe oxidation to produce hydrogen gas, while the N combined with atomic hydrogen to produce ammonia as a byproduct. The addition of carbon dioxide to this system accelerated the reaction with concomitant consumption of carbon dioxide. The promoted ammonia production upon addition of carbon dioxide can be attributed to the generation of atomic hydrogen from the redox reaction of carbonic acid and Fe, as well as removal of used Fe from the reaction system through the formation of a soluble carbonato complex. When carbonate was added to the reaction system, the production rates of ammonia and hydrogen increased further. The results here confirmed that ammonia can be synthesized from iron nitride under mild conditions by utilizing carbon dioxide.  相似文献   
20.
Hydrogen production by biogas conversion represent a promising solution for reduction of fossil CO2 emissions. In this work, a detailed techno-economic analysis was performed for decarbonized hydrogen production based on biogas conversion using calcium and chemical looping cycles. All evaluated concepts generate 100,000 Nm3/h high purity hydrogen. As reference cases, the biogas steam reforming design without decarbonization and with CO2 capture by gas-liquid chemical absorption were also considered. The results show that iron-based chemical looping design has higher energy efficiency compared with the gas-liquid absorption case by 2.3 net percentage points as well as a superior carbon capture rate (99% vs. 65%). The calcium looping case shows a lower efficiency than chemical scrubbing, with about 2.5 net percentage points, but the carbon capture rate is higher (95% vs. 65%). The hydrogen production cost increases with decarbonization, the calcium looping shows the most favourable situation (37.14 €/MWh) compared to the non-capture steam reforming case (33 €/MWh) and MDEA and iron looping cases (about 42 €/MWh). The calcium looping case has the lowest CO2 avoidance cost (10 €/t) followed by iron looping (20 €/t) and MDEA (31 €/t) cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号