首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210711篇
  免费   24795篇
  国内免费   10054篇
电工技术   7557篇
技术理论   3篇
综合类   13310篇
化学工业   58855篇
金属工艺   22579篇
机械仪表   8261篇
建筑科学   10604篇
矿业工程   4645篇
能源动力   3562篇
轻工业   19896篇
水利工程   2142篇
石油天然气   4580篇
武器工业   1557篇
无线电   15208篇
一般工业技术   38422篇
冶金工业   10026篇
原子能技术   1433篇
自动化技术   22920篇
  2024年   966篇
  2023年   3831篇
  2022年   7792篇
  2021年   9351篇
  2020年   7288篇
  2019年   6797篇
  2018年   7053篇
  2017年   8623篇
  2016年   9968篇
  2015年   10772篇
  2014年   13108篇
  2013年   14639篇
  2012年   13487篇
  2011年   14483篇
  2010年   10829篇
  2009年   11489篇
  2008年   10020篇
  2007年   12824篇
  2006年   12234篇
  2005年   10238篇
  2004年   8539篇
  2003年   7558篇
  2002年   6118篇
  2001年   4663篇
  2000年   4098篇
  1999年   3086篇
  1998年   2540篇
  1997年   2091篇
  1996年   1754篇
  1995年   1553篇
  1994年   1249篇
  1993年   993篇
  1992年   869篇
  1991年   702篇
  1990年   721篇
  1989年   655篇
  1988年   368篇
  1987年   240篇
  1986年   218篇
  1985年   242篇
  1984年   254篇
  1983年   197篇
  1982年   223篇
  1981年   97篇
  1980年   122篇
  1979年   58篇
  1978年   42篇
  1964年   39篇
  1962年   72篇
  1955年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
During the service life of structural sealant glazing (SSG) facades, the load-bearing capacity of the silicone bonds needs to be guaranteed. Laboratory tests can assess the durability of SSG-systems based on mechanical characteristics of the bond after simultaneous exposure to both climatic and mechanical loads. This article studies how the material characteristics of two common structural sealants are affected by laboratory and field exposure. Dynamic mechanical analysis (DMA) confirms a reduction in the dynamic modulus of exposed silicone samples. Results from thermogravimetric analysis, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and small-angle X-ray scattering/wide-angle X-ray scattering show differences between the two sealants and indicate no/minor changes in the composition and morphology of the laboratory and field exposed sealants. Mechanical characterization methods, such as DMA, and tensile and shear testing of the structural bond, are shown to be sensitive toward the combined climatic and mechanical loadings, and are hence suitable for studying degradation mechanisms of structural sealants.  相似文献   
42.
Thermal action in extraction process had effects on characteristic tryptic peptides identification and gelling properties of porcine gelatin. SDS-PAGE, HPLC-LTQ/Orbitrap high-resolution mass spectrometry, texture analyser and rheometer were used to evaluate collagen depolymerisation degree, characteristic tryptic peptides and gelling properties of gelatins prepared in various thermal actions. Results showed that with increasing temperature and time, depolymerisation degree enlarged, while gel strength, gelling and melting temperature decreased. Mass spectra showed that 47 and 49 common characteristic tryptic peptides were identified in gelatins extracted at 50 °C and 100 °C with various times, respectively. Moreover, 34 common characteristic tryptic peptides were identified in all gelatin samples. Further comparison between this work and our previous investigations yielded 20 common characteristic tryptic peptides, which stably exist in various thermal actions. These common characteristic tryptic peptides may be very helpful for the accurate authentication of porcine gelatin.  相似文献   
43.
44.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
45.
《Ceramics International》2021,47(24):34860-34868
Graphene oxide (GO) received a significant attention in the scientific community due to their excellent mechanical properties identifying themselves as an alternative and combinatory to various other metals and composites. Though GO possess excellent strength, it was observed from the literature that graphene oxide consisting of hydroxyl group elements ensue in poor bonding. Thus reduced functional group density (rFGD) graphene is preferred which has an advantage of good bonding, alongside very small quantity as a filler is required to achieve the enhancement equivalent to graphene oxide which forms the novelty of the current work. In current case, 3, 6 and 9 wt% of rFGD is dispersed into E-glass fibre reinforced composite by traditional hand layup technique. The obtained results revealed that, the tensile, flexural and impact strength have shown superior enhancement with 3 and 6 wt% of rGO than neat E-glass epoxy (0 wt% rGO), whereas an asymptotic decrement is noticed at 9 wt% when tested with ASTM standards except for impact strength. The microstructural studies also indicated the proper adhesion and alignment of fibres without any agglomerations corroborate the enhancement of properties. These overall finding supports the suitability of the developed laminates for potential use in structural applications in aerospace industry.  相似文献   
46.
With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ~948 °C, d33 of ~17.3 pC/N and ρb of ~6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.  相似文献   
47.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
48.
《Ceramics International》2022,48(3):3368-3373
Over the recent past, lead-based halide perovskite materials have drawn significant attention due to their excellent optical and electrical properties for solar cells and optoelectronics applications. However, the toxicity of lead elements and instability under ambient conditions leads to develop alternative compositions. Herein, we report a novel mechanochemical synthesis of tin iodide-based double perovskites (A2SnI6; A = Rb+, Cs+, methylammonium, and formamidinium), and their structural, optical, and electrical properties are investigated. Importantly, we found that the hydrogen iodide (HI) addition during the ball-milling process minimizes secondary phase formation in the synthesized A2SnI6 powders. The effects of HI addition and the A-site substitution are investigated with respect to the lattice parameters, optical bandgaps, and electrical properties of the synthesized perovskite materials. Our results demonstrate essential information to improve the understanding of halide perovskite materials and develop efficient lead-free perovskite photoelectric devices.  相似文献   
49.
介绍了高分子材料导热性能影响因素研究进展,重点阐释了聚合物基体的结构特性(链结构、分子间相互作用、取向、结晶度等)、导热填料(种类、含量、形态、尺寸等)以及制备方法等对高分子材料导热性能的影响。  相似文献   
50.
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL−1. Headspace solid phase microextraction associated to gas chromatography–mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号