In enology, alcoholic fermentation is a complex process involving several mechanisms. Slow and incomplete alcoholic fermentation is a chronic problem for the wine industry and factors leading to sluggish and stuck fermentations have been extensively studied and reviewed. The most studied cause of sluggish and stuck fermentation is the nitrogen content limitation. Nevertheless, other factors, such as temperature of fermentation and sugar concentration can affect the growth of yeasts. In this study we modelled the yeast growth‐cycle in wine model system as a function of temperature, sugar and ammonium concentrations; the individual effects and the interaction of these factors were analysed by means of a quadratic response surface methodology. Cell concentrations and weight loss were monitored in the whole wine fermentation process. The results of central composite design show that lower is the availability of nitrogen, higher is the cell growth rate; moreover, initial nitrogen concentration also influences survival time of Saccharomyces cerevisiae. 相似文献
The last decade has seen the development of a number of approaches for estimating those variables which are difficult to measure on-line in industrial process situations. Whilst a range of techniques is available, a common element is the use of process knowledge in the form of a system model. In the case of bioprocess systems, although a large range of models has been presented in the literature, their use in estimation schemes on an industrial scale has been limited. A number of reasons can be identified for their low level of utilisation. Of particular significance is the uncertainty which exists in quantifying system performance and the process-model mismatch which inevitably results. The level of ‘pre-defined model’ uncertainty, together with the knowledge gained during the course of the fermentation, serves to dictate estimator structure. The paper considers a range of estimation strategies and contrasts, through industrial applications, their performance characteristics and utility. 相似文献
This paper concerns the following problem: given a set of multi-attribute records, a fixed number of buckets and a two-disk system, arrange the records into the buckets and then store the buckets between the disks in such a way that, over all possible orthogonal range queries (ORQs), the disk access concurrency is maximized. We shall adopt the multiple key hashing (MKH) method for arranging records into buckets and use the disk modulo (DM) allocation method for storing buckets onto disks. Since the DM allocation method has been shown to be superior to any other allocation methods for allocating an MKH file onto a two-disk system for answering ORQs, the real issue is knowing how to determine an optimal way for organizing the records into buckets based upon the MKH concept.
A performance formula that can be used to evaluate the average response time, over all possible ORQs, of an MKH file in a two-disk system using the DM allocation method is first presented. Based upon this formula, it is shown that our design problem is related to a notoriously difficult problem, namely the Prime Number Problem. Then a performance lower bound and an efficient algorithm for designing optimal MKH files in certain cases are presented. It is pointed out that in some cases the optimal MKH file for ORQs in a two-disk system using the DM allocation method is identical to the optimal MKH file for ORQs in a single-disk system and the optimal average response time in a two-disk system is slightly greater than one half of that in a single-disk system. 相似文献
Litchi (Litchi chinensis Sonn.) fruits are very susceptible to pericarp browning which adversely affects consumer acceptability even though the aril portion remains in excellent condition. Litchi arils (litchis) were treated with a solution containing 0–2% (w/v) calcium lactate (CL), 0–0.02% (w/v) 4‐hexyl resorcinol (4‐HR) and 1% potassium sorbate. The pH of solution was adjusted to 4.0 with citric acid. Treated litchis were packed in polystyrene trays, over‐wrapped with polypropylene film, vacuum‐packed (0, 47409.3, 94831.9 Pa) and stored at 4 ± 2 °C. Drip losses, pH, total soluble solids (TSS), sensory attributes and microbiological quality of stored samples were estimated. A four‐factor, three‐level experimental design (D6 Hokes design) with 19 experiments was chosen. Mathematical models were developed to analyse and predict the effect of CL, 4‐HR, in‐package vacuum and storage time on the responses. TSS, pH and sensory scores decreased significantly (P 0.01), whereas drip losses and microbial count increased significantly (P 0.01) with time. Drip loss was significantly (P 0.1) reduced by addition of CL. 4‐HR prevented browning and changes in colour score during storage were significantly less. Vacuum in packages exerted significant (P 0.01) effect over pH, TSS, sensory and microbiological qualities of minimally processed litchis. 相似文献