首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187828篇
  免费   15371篇
  国内免费   11662篇
电工技术   30210篇
技术理论   8篇
综合类   16587篇
化学工业   10866篇
金属工艺   7009篇
机械仪表   16564篇
建筑科学   16630篇
矿业工程   7284篇
能源动力   9550篇
轻工业   4783篇
水利工程   5509篇
石油天然气   5810篇
武器工业   2675篇
无线电   14040篇
一般工业技术   9265篇
冶金工业   8328篇
原子能技术   1592篇
自动化技术   48151篇
  2024年   744篇
  2023年   2229篇
  2022年   3545篇
  2021年   4424篇
  2020年   5184篇
  2019年   4114篇
  2018年   3694篇
  2017年   5281篇
  2016年   5975篇
  2015年   6509篇
  2014年   12378篇
  2013年   10761篇
  2012年   13286篇
  2011年   15143篇
  2010年   11353篇
  2009年   11455篇
  2008年   11301篇
  2007年   13790篇
  2006年   12204篇
  2005年   10535篇
  2004年   8712篇
  2003年   7727篇
  2002年   6175篇
  2001年   5115篇
  2000年   4416篇
  1999年   3578篇
  1998年   2782篇
  1997年   2429篇
  1996年   1977篇
  1995年   1606篇
  1994年   1381篇
  1993年   997篇
  1992年   799篇
  1991年   609篇
  1990年   470篇
  1989年   412篇
  1988年   299篇
  1987年   190篇
  1986年   135篇
  1985年   173篇
  1984年   204篇
  1983年   159篇
  1982年   163篇
  1981年   93篇
  1980年   73篇
  1979年   70篇
  1978年   54篇
  1977年   49篇
  1964年   13篇
  1959年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Tracking control of oxygen excess ratio (OER) is crucial for dynamic performance and operating efficiency of the proton exchange membrane fuel cell (PEMFC). OER tracking errors and overshoots under dynamic load limit the PEMFC output power performance, and also could lead oxygen starvation which seriously affect the life of PEMFC. To solve this problem, an adaptive sliding mode observer based near-optimal OER tracking control approach is proposed in this paper. According to real time load demand, a dynamic OER optimization strategy is designed to obtain an optimal OER. A nonlinear system model based near-optimal controller is designed to minimize the OER tracking error under variable operation condition of PEMFC. An adaptive sliding mode observer is utilized to estimate the uncertain parameters of the PEMFC air supply system and update parameters in near-optimal controller. The proposed control approach is implemented in OER tracking experiments based on air supply system of a 5 kW PEMFC test platform. The experiment results are analyzed and demonstrate the efficacy of the proposed control approach under load changes, external disturbances and parameter uncertainties of PEFMC system.  相似文献   
12.
This study investigates the behavior of fruit and vegetable samples during drying. The experimental data are fitted to several different thin-layer drying models. Regression analysis is used to determine model parameters, while statistical indicators serve to evaluate the goodness of fit. The power function model gives the best fit for all examined samples. Based on this model, different drying and heat storage technologies can be combined to ensure that the required residual moisture content of an agricultural product is reached. It is demonstrated on the case of a specific Togolese processing plant that under favorable conditions, fossil fuel consumption can be decreased by 33 %.  相似文献   
13.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
14.
In this paper, a robust model-free controller for a grid-connected photovoltaic (PV) system is designed. The system consists of a PV generator connected to a three-phase grid by a DC/AC converter. The control objectives of the overall system are to extract maximum power from the PV source, to control reactive power exchange and to improve the quality of the current injected into the grid. The model-free control technique is based on the use of an ultra-local model instead of the dynamic model of the overall system. The local model is continuously updated based on a numerical differentiator using only the input–output behavior of the controlled system. The model-free controller consists of a classical feedback controller and a compensator for the effects of internal parameter changes and external disturbances. Simulation results illustrate the efficiency of the controller for grid-connected PV systems.  相似文献   
15.
Recently, researchers have devoted more attention to supercapacitors (SCs) to integrate with batteries in energy storage systems (ESSs) for vehicle applications. In this study, we attempted to characterize the use of SCs in the ESS for a PEM fuel cell vehicle equipped with an alternator to maximize the performance of regenerative braking. We applied lithium-ion batteries (LIBs) and SCs as energy storage devices to examine their effect on ESS. Then we used a hysteresis brake to apply controllable braking force on the flywheel to form hybrid braking (HB) and made efforts to study its behavior to suggest a braking control strategy. We also ran the whole system over the rotational speed to cover the range of driving speed. At last, we sized the SCs for the most commonly used fuel cell electric vehicle (FCEV) in Korea, i.e., Hyundai NEXO, based on the results obtained from the above study by alternator efficiencies.  相似文献   
16.
The low performance of open-cathode proton-exchange-membrane fuel cells (OCPEMFCs) is attributed to the low-humidity ambient air supplied to the cathode using electric fans. To improve the OCPEMFC performance, this paper proposes a novel humidification method by collecting water purged from the anode and supplying it to the open cathode. The OCPEMFC performance is evaluated at various humidifier distances from the cathode inlet, and it is compared with that where no humidifier is used when the OCPEMFC operates under three different current levels of 1, 5, and 8 A. The results show that the novel design improves the stack power, and optimal performance is achieved at a humidifier distance of 2 cm. The energy efficiency achieves an improvement between 1.4% and 1.8% when a humidifier is used.  相似文献   
17.
短波发射机功率稳定一直是通信领域致力改善的重点问题,短波发射机功率不稳定会直接影响无线电通信质量,造成通信失真、表达不清晰等问题。针对上述问题,基于软件校准设计短波发射机功率控制系统。该系统借鉴MVC设计模式搭建系统数据库层、业务逻辑层、控制层以及界面显示层基础框架;将功率计与短波发射机相连,实时采集工作状态下的短波发射机功率数据,通过信号处理器实施处理后并存储,借鉴传输元件,将数据发送到控制器,通过控制器校准短波发射机功率与预期之间的偏差,以偏差量为输入,利用改进PID运算得出控制量,生成控制命令,通过输入输出信号接口板输出命令,控制驱动装置调节短波发射机运行参数,实现功率控制。结果表明:与 控制系统、自动调谐系统应用相比较,在所设计系统应用控制下,100s内短波发射机的功率变化曲线与预期曲线之间的拟合优度指数更大,更接近1,优于对比系统,说明相比于对比系统。本系统控制表现更好,更能维持短波发射机功率稳定,达到了研究目标。  相似文献   
18.
This paper considers the shared path following control of an unmanned ground vehicle by a single person. A passive measure of human intent is used to blend the human and machine inputs in a mixed initiative approach. The blending law is combined with saturated super-twisting sliding mode speed and heading controllers, so that exogenous disturbances can be counteracted via equivalent control. It is proven that when the proposed blending law is used, the combined control signals from both the human and automatic controller respect the actuator magnitude constraints of the machine. To demonstrate the approach, shared control experiments are performed using an unmanned ground vehicle, which follows a lawn mower pattern shaped path.  相似文献   
19.
《Ceramics International》2022,48(13):18793-18802
The luminescence center energy transfer, crystal field strength, and covalency are limited by the crystal structure of the host and subsequently affect the luminescence efficiency, color, and intensity. Here, we report an excellent red phosphor BaLaLiWO6:0.40Eu3+ and the dependence between symmetry and luminous performance. A model for changing symmetry is drawn by analyzing the Coulomb potential and structure for the application of a double-perovskite phosphor BLLWO: Dy3+, Eu3+ in white light LEDs. The addition of Dy3+/Eu3+ makes the W-O bond formed by the B-site and oxygen ion longer and the Li-O bond shorter, and the difference between the eight octahedral around the A-site is reduced, increasing the symmetry of the A-site. Local symmetry was successfully modulated by changing the Eu3+ concentration to control the Y/B ratio of Dy3+ and the R/O ratio of Eu3+ and smoothly achieved (0.382, 0.373) warm white light color coordinate. The phosphor has excellent thermal stability and still has 92.3% intensity at 475 K. The above results show that the wavelength composition of the luminescence is tunable by changing the symmetry of the environment in which the doped ions are located. It applies to single hosts for the regulation of white light emission.  相似文献   
20.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号