首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18931篇
  免费   1945篇
  国内免费   967篇
电工技术   415篇
技术理论   1篇
综合类   1997篇
化学工业   1629篇
金属工艺   842篇
机械仪表   1338篇
建筑科学   5447篇
矿业工程   743篇
能源动力   395篇
轻工业   896篇
水利工程   658篇
石油天然气   1522篇
武器工业   164篇
无线电   559篇
一般工业技术   3023篇
冶金工业   839篇
原子能技术   105篇
自动化技术   1270篇
  2024年   96篇
  2023年   336篇
  2022年   550篇
  2021年   625篇
  2020年   671篇
  2019年   546篇
  2018年   509篇
  2017年   588篇
  2016年   590篇
  2015年   643篇
  2014年   1078篇
  2013年   1139篇
  2012年   1296篇
  2011年   1380篇
  2010年   1188篇
  2009年   1137篇
  2008年   986篇
  2007年   1306篇
  2006年   1066篇
  2005年   881篇
  2004年   861篇
  2003年   693篇
  2002年   529篇
  2001年   519篇
  2000年   463篇
  1999年   335篇
  1998年   304篇
  1997年   292篇
  1996年   237篇
  1995年   184篇
  1994年   123篇
  1993年   113篇
  1992年   103篇
  1991年   81篇
  1990年   85篇
  1989年   89篇
  1988年   35篇
  1987年   36篇
  1986年   20篇
  1985年   30篇
  1984年   23篇
  1983年   22篇
  1982年   14篇
  1981年   6篇
  1980年   23篇
  1979年   2篇
  1977年   2篇
  1975年   2篇
  1964年   2篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
During the service life of structural sealant glazing (SSG) facades, the load-bearing capacity of the silicone bonds needs to be guaranteed. Laboratory tests can assess the durability of SSG-systems based on mechanical characteristics of the bond after simultaneous exposure to both climatic and mechanical loads. This article studies how the material characteristics of two common structural sealants are affected by laboratory and field exposure. Dynamic mechanical analysis (DMA) confirms a reduction in the dynamic modulus of exposed silicone samples. Results from thermogravimetric analysis, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and small-angle X-ray scattering/wide-angle X-ray scattering show differences between the two sealants and indicate no/minor changes in the composition and morphology of the laboratory and field exposed sealants. Mechanical characterization methods, such as DMA, and tensile and shear testing of the structural bond, are shown to be sensitive toward the combined climatic and mechanical loadings, and are hence suitable for studying degradation mechanisms of structural sealants.  相似文献   
3.
An acoustic emission (AE) experiment was carried out to explore the AE location accuracy influenced by temperature. A hollow hemispherical specimen was used to simulate common underground structures. In the process of heating with the flame, the pulse signal of constant frequency was stimulated as an AE source. Then AE signals received by each sensor were collected and used for comparing localization accuracy at different temperatures. Results show that location errors of AE keep the same phenomenon in the early and middle heating stages. In the later stage of heating, location errors of AE increase sharply due to the appearance of cracks. This provides some beneficial suggestions on decreasing location errors of structural cracks caused by temperature and improves the ability of underground structure disaster prevention and control.  相似文献   
4.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
5.
In this paper, we present an aero‐structural model of a tethered swept wing for airborne wind energy generation. The carbon composite wing has neither fuselage nor actuated aerodynamic control surfaces and is controlled entirely from the ground using three separate tethers. The computational model is efficient enough to be used for weight optimisation at the initial design stage. The main load‐bearing wing component is a nontypical “D”‐shaped wing‐box, which is represented as a slender carbon composite shell and further idealised as a stack of two‐dimensional cross section models arranged along an anisotropic one‐dimensional beam model. This reduced 2+1D finite element model is then combined with a nonlinear vortex step method that determines the aerodynamic load. A bridle model is utilised to calculate the individual forces as a function of the aerodynamic load in the bridle lines that connect the main tether to the wing. The entire computational model is used to explore the influence of the bride on the D‐box structure. Considering a reference D‐box design along with a reference aerodynamic load case, the structural response is analysed for typical bridle configurations. Subsequently, an optimisation of the internal geometry and laminate fibre orientations is carried out using the structural computation models, for a fixed aerodynamic and bridle configuration. Aiming at a minimal weight of the wing structure, we find that for the typical load case of the system, an overall weight savings of approximately 20% can be achieved compared with the initial reference design.  相似文献   
6.
结合结构支撑理论,探究节点网络结构支持力的一些性质,提出了社交网络结构中的全网支持力和被支持力的总量一致性,并进一步提出计算节点支持力的方法。谣言作为特殊信息,在支持力不同节点之间的传播特性有所不同,借鉴随机游走模型中的PageRank计算方法,对不同节点支持力的谣言传播以及传播后的辟谣状况进行了仿真模拟,结果表明支持力不同的节点对于谣言传播和辟谣影响明显。  相似文献   
7.
Upper Barremian – Lower Aptian inner platform “Urgonian” limestones in the Mont de Vaucluse region, SE France, consist of alternating metre-scale microporous and tight intervals. This paper focuses on the influence of structural deformation on the reservoir properties of the Urgonian limestone succession in a study area near the town of Rustrel. Petrographic, petrophysical and structural data were recovered from five fully-cored boreholes, from the walls of a 100 m long underground tunnel, and from a 50 m long transect at a nearby outcrop. The data allowed reservoir property variations in the Urgonian limestones to be studied from core to reservoir scale. Eleven Reservoir Rock Types (RRTs) were identified based on petrographic features (texture, grain size), reservoir properties (porosity, permeability), and the frequency of structural discontinuities such as fractures, faults and stylolites. Tight and microporous reservoir rock types were distinguished. Tight reservoir rock types were characterised by early cementation of intergranular pore spaces and by the presence of frequent structural discontinuities. By contrast microporous reservoir rock types contained preserved intragranular microporosity and matrix permeability, but had very few structural discontinuities. Observed vertical alternations of microporous and tight rock types are interpreted to have been controlled by the early diagenesis of the Urgonian carbonates. Deformation associated with regional-scale tectonic phases, including Albian – Cenomanian “Durancian” uplift (∼105 to 96 Ma) and Pyrenean compression (∼55 to 25 Ma), resulted in the modification of the initial petrophysical properties of the Urgonian limestones. An early diagenetic imprint conditioned both the intensity of structural deformations and the associated circulations of diagenetic and meteoric fluids. Evolution of the Reservoir Rock Types is therefore linked both to the depositional conditions and to subsequent phases of structural deformation.  相似文献   
8.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
9.
Lithium‐rich disordered rock‐salt oxides have attracted great interest owing to their promising performance as Li‐ion battery cathodes. While experimental and theoretical efforts are critical in advancing this class of materials, a fundamental understanding of key property changes upon Li extraction is largely missing. In the present study, single‐crystal synthesis of a new disordered rock‐salt cathode material, Li1.3Ta0.3Mn0.4O2 (LTMO), and its use as a model compound to investigate Li concentration–driven evolution of local cationic ordering, charge compensation, and chemical distribution are reported. Through the combined use of 2D and 3D X‐ray nanotomography, it is shown that Li removal accompanied by oxygen oxidation is correlated with the development of morphological defects such as particle cracking. Chemical heterogeneity, quantified by subparticle level distribution of Mn valence state, is minimal during Mn redox, which drastically increases upon the formation of cracks during oxygen redox. Density functional theory and bond valence sum mismatch calculations reveal the presence of local short‐range ordering in the pristine oxide, which gradually disappears along with the extraction of Li. The study suggests that with cycling the transformation into true cation–disordered state can be expected, which likely impacts the voltage profile and obtainable energy density of the oxide cathodes.  相似文献   
10.
The network reconfiguration is an important stage of restoring a power system after a complete blackout or a local outage. Reasonable planning of the network reconfiguration procedure is essential for rapidly restoring the power system concerned. An approach for evaluating the importance of a line is first proposed based on the line contraction concept. Then, the interpretative structural modeling (ISM) is employed to analyze the relationship among the factors having impacts on the network reconfiguration. The security and speediness of restoring generating units are considered with priority, and a method is next proposed to select the generating unit to be restored by maximizing the restoration benefit with both the generation capacity of the restored generating unit and the importance of the line in the restoration path considered. Both the start-up sequence of generating units and the related restoration paths are optimized together in the proposed method, and in this way the shortcomings of separately solving these two issues in the existing methods are avoided. Finally, the New England 10-unit 39-bus power system and the Guangdong power system in South China are employed to demonstrate the basic features of the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号