首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107562篇
  免费   15605篇
  国内免费   10536篇
电工技术   16016篇
技术理论   9篇
综合类   12870篇
化学工业   4094篇
金属工艺   2236篇
机械仪表   5624篇
建筑科学   4737篇
矿业工程   2724篇
能源动力   2355篇
轻工业   1901篇
水利工程   2430篇
石油天然气   2028篇
武器工业   1098篇
无线电   21217篇
一般工业技术   5088篇
冶金工业   1854篇
原子能技术   305篇
自动化技术   47117篇
  2024年   370篇
  2023年   2423篇
  2022年   4374篇
  2021年   4946篇
  2020年   5010篇
  2019年   3593篇
  2018年   2959篇
  2017年   3396篇
  2016年   3577篇
  2015年   4141篇
  2014年   6991篇
  2013年   6370篇
  2012年   7979篇
  2011年   8321篇
  2010年   6495篇
  2009年   6980篇
  2008年   7189篇
  2007年   8058篇
  2006年   6813篇
  2005年   6147篇
  2004年   5162篇
  2003年   4547篇
  2002年   3597篇
  2001年   3068篇
  2000年   2521篇
  1999年   2049篇
  1998年   1517篇
  1997年   1216篇
  1996年   1028篇
  1995年   799篇
  1994年   584篇
  1993年   406篇
  1992年   270篇
  1991年   180篇
  1990年   148篇
  1989年   116篇
  1988年   87篇
  1987年   46篇
  1986年   45篇
  1985年   39篇
  1984年   26篇
  1983年   25篇
  1982年   28篇
  1981年   9篇
  1980年   8篇
  1979年   11篇
  1975年   5篇
  1960年   3篇
  1959年   5篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Recently, single image super-resolution (SISR) has been widely applied in the fields of underwater robot vision and obtained remarkable performance. However, most current methods generally suffered from the problem of a heavy burden on computational resources with large model sizes, which limited their real-world underwater robotic applications. In this paper, we introduce and tackle the super resolution (SR) problem for underwater robot vision and provide an efficient solution for near real-time applications. We present a novel lightweight multi-stage information distillation network, named MSIDN, for better balancing performance against applicability, which aggregates the local distilled features from different stages for more powerful feature representation. Moreover, a novel recursive residual feature distillation (RRFD) module is constructed to progressively extract useful features with a modest number of parameters in each stage. We also propose a channel interaction & distillation (CI&D) module that employs channel split operation on the preceding features to produce two-part features and utilizes the inter channel-wise interaction information between them to generate the distilled features, which can effectively extract the useful information of current stage without extra parameters. Besides, we present USR-2K dataset, a collection of over 1.6K samples for large-scale underwater image SR training, and a testset with an additional 400 samples for benchmark evaluation. Extensive experiments on several standard benchmark datasets show that the proposed MSIDN can provide state-of-the-art or even better performance in both quantitative and qualitative measurements.  相似文献   
2.
In the recent advancements in image and video analysis, the detection of salient regions in the image becomes the initial step. This plays a crucial role in deciding the performance of such algorithms. In this work, a Multi-Resolution Feature Extraction (MRFE) technique that makes use of Discrete Wavelet Convolutional Neural Network (DWCNN) for generating features is employed. An Enhanced Feature Extraction (EFE) module extracts additional features from the high level features of the DWCNN, which are used to frame both channel as well as spatial attention models for yielding contextual attention maps. A new hybrid loss function is also proposed, which is a combination of Balanced Cross Entropy (BCE) loss and Edge based Structural Similarity (ESSIM) loss that effectively identifies and segments the salient regions with clear boundaries. The method is tested exhaustively with five different benchmark datasets and is proved superior to the existing state-of-the-art methods with a minimum Mean Absolute error (MAE) of 0.03 and F-measure of 0.956.  相似文献   
3.
Sialidosis, caused by a genetic deficiency of the lysosomal sialidase gene (NEU1), is a systemic disease involving various tissues and organs, including the nervous system. Understanding the neurological dysfunction and pathology associated with sialidosis remains a challenge, partially due to the lack of a human model system. In this study, we have generated two types of induced pluripotent stem cells (iPSCs) with sialidosis-specific NEU1G227R and NEU1V275A/R347Q mutations (sialidosis-iPSCs), and further differentiated them into neural precursor cells (iNPCs). Characterization of NEU1G227R- and NEU1V275A/R347Q- mutated iNPCs derived from sialidosis-iPSCs (sialidosis-iNPCs) validated that sialidosis-iNPCs faithfully recapitulate key disease-specific phenotypes, including reduced NEU1 activity and impaired lysosomal and autophagic function. In particular, these cells showed defective differentiation into oligodendrocytes and astrocytes, while their neuronal differentiation was not notably affected. Importantly, we found that the phenotypic defects of sialidosis-iNPCs, such as impaired differentiation capacity, could be effectively rescued by the induction of autophagy with rapamycin. Our results demonstrate the first use of a sialidosis-iNPC model with NEU1G227R- and NEU1V275A/R347Q- mutation(s) to study the neurological defects of sialidosis, particularly those related to a defective autophagy–lysosome pathway, and may help accelerate the development of new drugs and therapeutics to combat sialidosis and other LSDs.  相似文献   
4.
5.
In recent years, artificial intelligence (AI) is being increasingly utilised in disaster management activities. The public is engaged with AI in various ways in these activities. For instance, crowdsourcing applications developed for disaster management to handle the tasks of collecting data through social media platforms, and increasing disaster awareness through serious gaming applications. Nonetheless, there are limited empirical investigations and understanding on public perceptions concerning AI for disaster management. Bridging this knowledge gap is the justification for this paper. The methodological approach adopted involved: Initially, collecting data through an online survey from residents (n = 605) of three major Australian cities; Then, analysis of the data using statistical modelling. The analysis results revealed that: (a) Younger generations have a greater appreciation of opportunities created by AI-driven applications for disaster management; (b) People with tertiary education have a greater understanding of the benefits of AI in managing the pre- and post-disaster phases, and; (c) Public sector administrative and safety workers, who play a vital role in managing disasters, place a greater value on the contributions by AI in disaster management. The study advocates relevant authorities to consider public perceptions in their efforts in integrating AI in disaster management.  相似文献   
6.
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and about 20% is metastatic at diagnosis and untreatable. Increasing evidence suggests that the heterogeneous nature of CRC is related to colorectal cancer stem cells (CCSCs), a small cells population with stemness behaviors and responsible for tumor progression, recurrence, and therapy resistance. Growing knowledge of stem cells (SCs) biology has rapidly improved uncovering the molecular mechanisms and possible crosstalk/feedback loops between signaling pathways that directly influence intestinal homeostasis and tumorigenesis. The generation of CCSCs is probably connected to genetic changes in members of signaling pathways, which control self-renewal and pluripotency in SCs and then establish function and phenotype of CCSCs. Particularly, various deregulated CCSC-related miRNAs have been reported to modulate stemness features, controlling CCSCs functions such as regulation of cell cycle genes expression, epithelial-mesenchymal transition, metastasization, and drug-resistance mechanisms. Primarily, CCSC-related miRNAs work by regulating mainly signal pathways known to be involved in CCSCs biology. This review intends to summarize the epigenetic findings linked to miRNAome in the maintenance and regulation of CCSCs, including their relationships with different signaling pathways, which should help to identify specific diagnostic, prognostic, and predictive biomarkers for CRC, but also develop innovative CCSCs-targeted therapies.  相似文献   
7.
Camera-based transmission line detection (TLD) is a fundamental and crucial task for automatically patrolling powerlines by aircraft. Motivated by instance segmentation, a TLD algorithm is proposed in this paper with a novel deep neural network, i.e., CableNet. The network structure is designed based on fully convolutional networks (FCNs) with two major improvements, considering the specific appearance characteristics of transmission lines. First, overlaying dilated convolutional layers and spatial convolutional layers are configured to better represent continuous long and thin cable shapes. Second, two branches of outputs are arranged to generate multidimensional feature maps for instance segmentation. Thus, cable pixels can be detected and assigned cable IDs simultaneously. Multiple experiments are conducted on aerial images, and the results show that the proposed algorithm obtains reliable detection performance and is superior to traditional TLD methods. Meanwhile, segmented pixels can be accurately identified as cable instances, contributing to line fitting for further applications.  相似文献   
8.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
9.
Wastewater treatment consists of three or four sequential stages: preliminary, primary, secondary, and tertiary. Each stage can comprise multiple alternative technologies that can perform the same tasks with different efficiencies, operating times, and costs. Thus, we propose a systematic approach for designing wastewater treatment networks by utilizing principles of mathematical modeling and generating an exhaustive enumeration of all the possible technologies and their connections during the early stages of designing a treatment facility. Some of these structures are nonintuitive and include recycling, reprocessing, bypasses, and multiple technologies in parallel or series to remove the same contaminant. The nonintuitive structures with multiple technologies may provide a measure of resilience compared to typical heuristic designs. Thus, the combination of P-graph methodology and the sequence of treatment technologies predicted via the optimization algorithm from the maximal structure is based on holistic considerations and does not lead to suboptimal solutions.  相似文献   
10.
In nature, the feathers of the goose Anser cygnoides domesticus stay superhydrophobic over a long term, thought as the main reason for keeping the surface clean. However, contaminants, especially those that are oleophilic or trapped within textures, cannot be removed off the superhydrophobic feathers spontaneously. Here, a different self-cleaning strategy based on superhydrophilic feathers is revealed that is imparted by self-coating of the amphiphilic saliva, which enables removing away low-surface-tension and/or small-size contaminants by forming directional water sheeting depending on their unique anisotropic microstructures. Particularly, the surface superhydrophilicity is switchable to superhydrophobicity upon exposure to air for maintaining a clean surface for a long time, which is further enhanced by coating with self-secreted preening oil. By alternate switching between a transient superhydrophilicity and a long-term stable superhydrophobicity, the goose feathers exhibit an integrated smart self-cleaning strategy, which is also shared by other aquatic birds. An attractive point is the re-entrant structure of the feathers, which facilitates not only liquid spreading on superhydrophilic feathers, but also long-term stability of the cleaned surface by shedding water droplets off the superhydrophobicity feathers. Thus, artificial self-cleaning microtextures are developed. The result renews the common knowledge on the self-cleaning of aquatic bird feathers, offering inspiration for developing bioinspired self-cleaning microtextures and coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号