全文获取类型
收费全文 | 89563篇 |
免费 | 9290篇 |
国内免费 | 5610篇 |
专业分类
电工技术 | 7488篇 |
综合类 | 7774篇 |
化学工业 | 12531篇 |
金属工艺 | 7737篇 |
机械仪表 | 5109篇 |
建筑科学 | 6614篇 |
矿业工程 | 1967篇 |
能源动力 | 4659篇 |
轻工业 | 4708篇 |
水利工程 | 1921篇 |
石油天然气 | 3822篇 |
武器工业 | 1064篇 |
无线电 | 11607篇 |
一般工业技术 | 9334篇 |
冶金工业 | 5250篇 |
原子能技术 | 1409篇 |
自动化技术 | 11469篇 |
出版年
2024年 | 462篇 |
2023年 | 1349篇 |
2022年 | 2416篇 |
2021年 | 2877篇 |
2020年 | 3080篇 |
2019年 | 2615篇 |
2018年 | 2451篇 |
2017年 | 3312篇 |
2016年 | 3486篇 |
2015年 | 3588篇 |
2014年 | 5407篇 |
2013年 | 5806篇 |
2012年 | 6487篇 |
2011年 | 7114篇 |
2010年 | 5029篇 |
2009年 | 5212篇 |
2008年 | 4862篇 |
2007年 | 6015篇 |
2006年 | 5274篇 |
2005年 | 4383篇 |
2004年 | 3758篇 |
2003年 | 3241篇 |
2002年 | 2682篇 |
2001年 | 2350篇 |
2000年 | 1911篇 |
1999年 | 1578篇 |
1998年 | 1270篇 |
1997年 | 1138篇 |
1996年 | 978篇 |
1995年 | 800篇 |
1994年 | 694篇 |
1993年 | 484篇 |
1992年 | 488篇 |
1991年 | 399篇 |
1990年 | 320篇 |
1989年 | 211篇 |
1988年 | 172篇 |
1987年 | 109篇 |
1986年 | 102篇 |
1985年 | 96篇 |
1984年 | 106篇 |
1983年 | 64篇 |
1982年 | 67篇 |
1981年 | 52篇 |
1980年 | 47篇 |
1979年 | 31篇 |
1978年 | 14篇 |
1977年 | 22篇 |
1959年 | 15篇 |
1951年 | 9篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
在干扰条件下,卫星导航抗干扰波束形成算法往往需要卫星信号波达方向(Direction-of-Arrival,DOA)的先验信息。但当存在低信噪比信号或主动干扰源时,常规的DOA估计算法性能急剧下降甚至失效。针对此问题,提出了一种被干扰信号压制的低信噪比“北斗”信号的DOA估计算法。该算法首先通过对接收信号进行子空间投影抑制干扰信号,然后对抑制干扰后的信号进行解扩重构处理,最后通过多重信号分类算法完成对“北斗”信号的DOA估计。仿真结果表明,在干扰信号干信比80 dB条件下,“北斗”信号DOA估计误差在5°以内,为下一步进行波束形成计算提供了高精度的入射角信息。 相似文献
2.
大型综合室内亲子乐园属于高大空间,设有游乐设施和游戏的特殊性使得对空间的舒适性要求一致,但是送风气流遇阻严重,室内存在较多气流死角,影响室内空气质量和儿童健康。因此其空调设计不仅需要考虑温度、风速的空间均匀度,还要考虑各点的空气龄和PMV-PPD指标。以天津某亲子乐园为研究对象,利用scSTREAM软件对适用于该房间的辐射供冷加新风、置换通风、混合通风三种空调方式的送风效果进行数值模拟分析,从流场的均匀性、人员的热舒适性等方面对模拟结果进行探讨,研究结果表明辐射供冷加新风方式的空间均匀性和PMV指标最佳,混合通风方式的空气龄最小。 相似文献
3.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature. 相似文献
4.
《低温学》2015
He-3 is generally recognized for its ability to provide more excellent thermophysical performance than He-4, especially in the 4 K temperature range. However, this was not always the case in our preliminary experiments on a three-stage Stirling-type pulse tube cryocooler (SPTC). Our ongoing studies, as reported in this paper, demonstrate that the different working fluids also affect the performance through their phase shifting capability. This feature has been passed over in large part by researchers considering refrigerant substitution. Unlike previous theoretical analyses that focus primarily on regenerator losses, this report investigates the effects of the working fluid on the phase angle at the cold end in order to quantitatively reveal the relationship between the lowest attainable temperature and the cooling capacity. The analysis agrees well with our experimental results on a three-stage SPTC. While running with the operating parameters optimized for He-3, the lowest temperature of the SPTC decreased from 5.4 K down to 4.03 K. This is the lowest refrigeration temperature ever achieved with a three-stage SPTC. 相似文献
5.
Yingcai Bi Menglu Lan Jiaxin Li Shupeng Lai Ben M. Chen 《Asian journal of control》2019,21(4):1732-1744
Micro Aerial Vehicles (MAVs) have great potentials to be applied for indoor search and rescue missions. In this paper, we propose a modular lightweight design of an autonomous MAV with integrated hardware and software. The MAV is equipped with the 2D laser scanner, camera, mission computer and flight controller, running all the computation onboard in real time. The onboard perception system includes a laser‐based SLAM module and a custom‐designed visual detection module. A dual Kalman filter design provides robust state estimation by multiple sensor fusion. Specifically, the fusion module provides robust altitude measurement in the circumstance of surface changing. In addition, indoor‐outdoor transition is explicitly handled by the fusion module. In order to efficiently navigate through obstacles and adapt to multiple tasks, a task tree‐based mission planning method is seamlessly integrated with path planning and control modules. The MAV is capable of searching and rescuing victims from unknown indoor environments effectively. It was validated by our award‐winning performance at the 2017 International Micro Air Vehicle Competition (IMAV 2017), held in Toulouse, France. The performance video is available on https://youtu.be/8H19ppS_VXM . 相似文献
6.
In this letter, we address the problem of Direction of Arrival (DOA) estimation with nonuniform linear array in the context of sparse Bayesian learning (SBL) framework. The nonuniform array output is deemed as an incomplete-data observation, and a hypothetical uniform linear array output is treated as an unavailable complete-data observation. Then the Expectation-Maximization (EM) criterion is directly utilized to iteratively maximize the expected value of the complete-data log likelihood under the posterior distribution of the latent variable. The novelties of the proposed method lie in its capability of interpolating the actual received data to a virtual uniform linear array, therefore extending the achievable array aperture. Simulation results manifests the superiority of the proposed method over off-the-shelf algorithms, specially on circumstances such as low SNR, insufficient snapshots, and spatially adjacent sources. 相似文献
7.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging. 相似文献
8.
9.
Baizhan Li Chenqiu Du Hong Liu Wei Yu Jie Zheng Meilan Tan Zhenxing Jin Wenjie Li Jing Wu Lu Chen Runming Yao 《Indoor air》2019,29(2):308-319
The extensive research interests in environmental temperature can be linked to human productivity / performance as well as comfort and health; while the mechanisms of physiological indices responding to temperature variations remain incompletely understood. This study adopted a physiological sensory nerve conduction velocity (SCV) as a temperature‐sensitive biomarker to explore the thermoregulatory mechanisms of human responding to annual temperatures. The measurements of subjects’ SCV (over 600 samples) were conducted in a naturally ventilated environment over all four seasons. The results showed a positive correlation between SCV and annual temperatures and a Boltzmann model was adopted to depict the S‐shaped trend of SCV with operative temperatures from 5°C to 40°C. The SCV increased linearly with operative temperatures from 14.28°C to 20.5°C and responded sensitively for 10.19°C‐24.59°C, while tended to be stable beyond that. The subjects’ thermal sensations were linearly related to SCV, elaborating the relation between human physiological regulations and subjective thermal perception variations. The findings reveal the body SCV regulatory characteristics in different operative temperature intervals, thereby giving a deeper insight into human autonomic thermoregulation and benefiting for built environment designs, meantime minimizing the temperature‐invoked risks to human health and well‐being. 相似文献
10.
Physical Stability of Octenyl Succinate–Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems 下载免费PDF全文
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. 相似文献