首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76330篇
  免费   9279篇
  国内免费   4776篇
电工技术   3769篇
技术理论   2篇
综合类   6850篇
化学工业   10964篇
金属工艺   6631篇
机械仪表   7035篇
建筑科学   4778篇
矿业工程   2952篇
能源动力   2272篇
轻工业   7057篇
水利工程   2786篇
石油天然气   3887篇
武器工业   1403篇
无线电   8812篇
一般工业技术   12331篇
冶金工业   2159篇
原子能技术   870篇
自动化技术   5827篇
  2024年   198篇
  2023年   1364篇
  2022年   2114篇
  2021年   2579篇
  2020年   2697篇
  2019年   2470篇
  2018年   2441篇
  2017年   2891篇
  2016年   3038篇
  2015年   3096篇
  2014年   4281篇
  2013年   5071篇
  2012年   5663篇
  2011年   5949篇
  2010年   4330篇
  2009年   4415篇
  2008年   3982篇
  2007年   5057篇
  2006年   4683篇
  2005年   3717篇
  2004年   3085篇
  2003年   2697篇
  2002年   2275篇
  2001年   1884篇
  2000年   1715篇
  1999年   1420篇
  1998年   1175篇
  1997年   1042篇
  1996年   950篇
  1995年   769篇
  1994年   672篇
  1993年   585篇
  1992年   464篇
  1991年   318篇
  1990年   322篇
  1989年   222篇
  1988年   187篇
  1987年   90篇
  1986年   93篇
  1985年   83篇
  1984年   79篇
  1983年   53篇
  1982年   60篇
  1981年   19篇
  1980年   27篇
  1979年   27篇
  1978年   6篇
  1976年   4篇
  1959年   9篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Chameleonic properties, i. e., the capacity of a molecule to hide polarity in non-polar environments and expose it in water, help achieving sufficient permeability and solubility for drug molecules with high MW. We present models of experimental measures of polarity for a set of 24 FDA approved drugs (MW 405-1113) and one PROTAC (MW 1034). Conformational ensembles in aqueous and non-polar environments were generated using molecular dynamics. A linear regression model that predicts chromatographic apparent polarity (EPSA) with a mean unsigned error of 10 Å2 was derived based on separate terms for donor, acceptor, and total molecular SASA. A good correlation (R2=0.92) with an experimental measure of hydrogen bond donor potential, Δlog Poct-tol, was found for the mean hydrogen bond donor SASA of the conformational ensemble scaled with Abraham's A hydrogen bond acidity. Two quantitative measures of chameleonic behaviour, the chameleonic efficiency indices, are introduced. We envision that the methods presented herein will be useful to triage designed molecules and prioritize those with the best chance of achieving acceptable permeability and solubility.  相似文献   
2.
《Ceramics International》2021,47(20):28557-28565
To reduce the energy consumption of cooling in the hot summer days, searching for novel NIR shielding materials for buildings is of great value. In this report, monodispersed F doped TiO2 nanocrystals with an average size of 8.6 nm were synthesized as novel solar shielding materials for energy-saving windows. All the products adopted an anatase TiO2 structure. After doping of F ions, the morphology of TiO2 was transformed from an irregular shape to a pseudospherical shape. The Raman shift and XPS depth analysis confirmed the successful doping of F ions into the lattice oxygen sites in the TiO2 structure. The introduction of F ions generated free electrons and bulk Ti3+ in TiO2 crystals, which activated a localized surface plasmon resonance (LSPR) absorption in the NIR region. Correspondingly, the NIR shielding performance of the TiO2 films improved with increasing F doping amounts. The NIR shielding value of the films increased from 1.3% to 43.2% when the molar ratio of F to Ti increased from 0 to 0.3. The reason can be attributed to the enhanced NIR absorption induced by the increased electron concentration after doping of fluorine ions. The F–TiO2 films showed superior visible transmittance (90.1–96.7%). Moreover, the F–TiO2 films lowered the indoor temperature of the heat box by 5.3 °C in the thermal tests. Overall, the prepared F–TiO2 nanocrystals show a great potential to be used for energy-saving windows.  相似文献   
3.
An acoustic emission (AE) experiment was carried out to explore the AE location accuracy influenced by temperature. A hollow hemispherical specimen was used to simulate common underground structures. In the process of heating with the flame, the pulse signal of constant frequency was stimulated as an AE source. Then AE signals received by each sensor were collected and used for comparing localization accuracy at different temperatures. Results show that location errors of AE keep the same phenomenon in the early and middle heating stages. In the later stage of heating, location errors of AE increase sharply due to the appearance of cracks. This provides some beneficial suggestions on decreasing location errors of structural cracks caused by temperature and improves the ability of underground structure disaster prevention and control.  相似文献   
4.
5.
The effects of three types of salt including NaF, KCl, and NaCl on the properties of NiFe2O4 nanoparticles using salt-assisted solution combustion synthesis (SSCS) have been investigated. The synthesized powders were evaluated by SEM, TEM, FTIR, XRD, and VSM analysis. Also, the specific surface area (SSA), as well as size distribution and volume of the porosities of NiFe2O4 powders were determined by the BET apparatus. The visual observations showed that the intensity and time of combustion synthesis of nanoparticles have been severely influenced by the type of salt. The highest crystallinity was observed in the synthesized powder using NaCl. The SSA has also been correlated completely to the type of salt. The quantities of SSA was achieved about 91.62, 64.88, and 47.22 m2g-1 for the powders synthesized by KCl, NaCl, and NaF respectively. Although the magnetic hysteresis loops showed the soft ferromagnetic behavior of the NiFe2O4 nanoparticles in all conditions, KCl salt could produce the particles with the least coercivity and remanent magnetization. Based on the present study, the salt type is a key parameter in the SSCS process for the preparation of spinel ferrites. Thermodynamic evaluation also showed that the melting point and heat capacity are important parameters for the proper selection of the salt.  相似文献   
6.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
7.
8.
《Ceramics International》2021,47(18):25177-25200
Porous TiO2-based catalysts have recently received remarkable attention in the field of energy conversion systems, including hydrogen/oxygen evolution reaction, oxygen/nitrogen reduction reaction, and photodegradation of pollutants owing to their unique structure, large surface area, and good chemical stability. In this report, we review existing research on porous TiO2-based catalysts for energy conversion systems during the past four years. First, the advantages of porous TiO2-based catalysts are introduced. Next, the synthetic approaches in developing porous TiO2-based catalysts are summarized. The different types of energy conversion systems based on porous TiO2-based catalysts are then presented. Finally, the challenges and future perspectives in synthesizing porous TiO2-based catalysts are discussed.  相似文献   
9.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
10.
The heterogeneous catalysis of transesterification of gmelina seed oil to biodiesel is evaluated. The oil was extracted from the seeds with n‐hexane by solvent extraction and characterized to determine its physiochemical properties. Response surface methodology was applied to optimize the effect of process variables on the biodiesel yield. The base‐activated clay catalyst performed as montmorillonite clay with the characteristic property of a Brønsted acid. It has an improved surface area after activation that enhanced its catalytic activity on transesterification reaction. Under optimal conditions, the biodiesel yield was 70.1 %, thus demonstrating that the model predicted well the biodiesel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号