首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133365篇
  免费   16497篇
  国内免费   7073篇
电工技术   54601篇
技术理论   3篇
综合类   10586篇
化学工业   4550篇
金属工艺   5997篇
机械仪表   9814篇
建筑科学   5103篇
矿业工程   3171篇
能源动力   8939篇
轻工业   1874篇
水利工程   3244篇
石油天然气   1832篇
武器工业   1268篇
无线电   17935篇
一般工业技术   8082篇
冶金工业   3527篇
原子能技术   3074篇
自动化技术   13335篇
  2024年   522篇
  2023年   1594篇
  2022年   3093篇
  2021年   3631篇
  2020年   4160篇
  2019年   3342篇
  2018年   3113篇
  2017年   4628篇
  2016年   5080篇
  2015年   5679篇
  2014年   9318篇
  2013年   7705篇
  2012年   10547篇
  2011年   11350篇
  2010年   8349篇
  2009年   8393篇
  2008年   8384篇
  2007年   9960篇
  2006年   8939篇
  2005年   7148篇
  2004年   6001篇
  2003年   4985篇
  2002年   3924篇
  2001年   3417篇
  2000年   2838篇
  1999年   2182篇
  1998年   1542篇
  1997年   1466篇
  1996年   1191篇
  1995年   904篇
  1994年   841篇
  1993年   566篇
  1992年   454篇
  1991年   305篇
  1990年   272篇
  1989年   209篇
  1988年   154篇
  1987年   121篇
  1986年   70篇
  1985年   68篇
  1984年   100篇
  1983年   71篇
  1982年   78篇
  1981年   36篇
  1980年   19篇
  1979年   18篇
  1978年   13篇
  1977年   16篇
  1959年   23篇
  1956年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
以智能反射面(intelligent reflecting surface,IRS)辅助的无线携能通信(simultaneous wireless information and power transfer,SWIPT)系统为背景,研究了该系统中基于能效优先的多天线发送端有源波束成形与IRS无源波束成形联合设计与优化方法。以最大化接收端的最小能效为优化目标,构造在发送端功率、接收端能量阈值、IRS相移等多约束下的非线性优化问题,用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。采用Dinkelbach算法转化目标函数,通过奇异值分解(singular value decomposition,SVD)和半定松弛(semi-definite relaxation,SDR)得到发送端有源波束成形向量。采用SDR得到IRS相移矩阵与反射波束成形向量。结果表明,该系统显著降低了系统能量收集(energy harvesting,EH)接收端的能量阈值。当系统总电路功耗为?15 dBm时,所提方案的用户能效为300 KB/J。当IRS反射阵源数与发送天线数均为最大值时,系统可达最大能效。  相似文献   
2.
Accurate and timely network traffic measurement is essential for network status monitoring, network fault analysis, network intrusion detection, and network security management. With the rapid development of the network, massive network traffic brings severe challenges to network traffic measurement. However, existing measurement methods suffer from many limitations for effectively recording and accurately analyzing big-volume traffic. Recently, sketches, a family of probabilistic data structures that employ hashing technology for summarizing traffic data, have been widely used to solve these problems. However, current literature still lacks a thorough review on sketch-based traffic measurement methods to offer a comprehensive insight on how to apply sketches for fulfilling various traffic measurement tasks. In this paper, we provide a detailed and comprehensive review on the applications of sketches in network traffic measurement. To this end, we classify the network traffic measurement tasks into four categories based on the target of traffic measurement, namely cardinality estimation, flow size estimation, change anomaly detection, and persistent spreader identification. First, we briefly introduce these four types of traffic measurement tasks and discuss the advantages of applying sketches. Then, we propose a series of requirements with regard to the applications of sketches in network traffic measurement. After that, we perform a fine-grained classification for each sketch-based measurement category according to the technologies applied on sketches. During the review, we evaluate the performance, advantages and disadvantages of current sketch-based traffic measurement methods based on the proposed requirements. Through the thorough review, we gain a number of valuable implications that can guide us to choose and design proper traffic measurement methods based on sketches. We also review a number of general sketches that are highly expected in modern network systems to simultaneously perform multiple traffic measurement tasks and discuss their performance based on the proposed requirements. Finally, through our serious review, we summarize a number of open issues and identify several promising research directions.  相似文献   
3.
Today, utility meters for water are tested for measurement behavior at stable operating conditions at specified flow rates as part of the approval process. The measurement error that occurs during start and stop or when changing between flow rates may not be taken into account. In addition, there are new technologies whose measuring behavior under real-world conditions is only known to a limited extend. To take these facts into account, a new method has been developed and tested to determine the measurement behavior of water meters under dynamic load profiles as they occur in the real application. For this purpose, a test rig for flow rate measurement was extended by a cavitation nozzle apparatus and the generation of dynamic load profiles was validated. For the cavitation nozzles used, possible factors influencing the flow rate, such as temperature and purity of the water as well as the upstream pressure were investigated. Using different types of domestic water meters, the applicability of the dynamic test procedure was demonstrated and the measurement behavior of the meters was characterised.  相似文献   
4.
Limiting current density at different temperatures, backpressures, and balance gases can be used to separate molecular diffusion resistance, Knudsen diffusion resistance and local transport resistance of membrane electrode assembly (MEA). However, the measurement of limiting current density has no unified protocol. The diverse choices in the literature, either in the control of current or voltage or in the atmosphere like relative humidity and O2 concentrations, make it difficult to compare the results and identify the true bottleneck hindering the mass transport. In this work, the current-voltage curves obtained by current scanning/stepping and voltage scanning/stepping methods under dilute O2 of different concentrations and a wide range of relative humidity were measured and analyzed systematically. It is found that the voltage stepping method is superior to the other three ways of control for the reliable determination of the limiting current density. Aided with simultaneous electrochemical impedance spectroscopy measurement, the limiting current density can be determined with pinpoint accuracy. When the limiting current density is just used to qualitatively evaluate different MEA, the voltage scanning method can be used instead for its high time efficiency. The selection of the atmosphere also plays an important role in suppressing the distortion from excessive water and reducing the spurious contribution from proton conduction resistance. It is found that O2 concentrations at 0.5 vol% and relative humidity at 90% can give the best estimation of O2 transport resistance in membrane electrode assembly.  相似文献   
5.
The SARS-CoV-2 pandemic has created a great demand for a better understanding of the spread of viruses in indoor environments. A novel measurement system consisting of one portable aerosol-emitting mannequin (emitter) and a number of portable aerosol-absorbing mannequins (recipients) was developed that can measure the spread of aerosols and droplets that potentially contain infectious viruses. The emission of the virus from a human is simulated by using tracer particles solved in water. The recipients inhale the aerosols and droplets and quantify the level of solved tracer particles in their artificial lungs simultaneously over time. The mobile system can be arranged in a large variety of spreading scenarios in indoor environments and allows for quantification of the infection probability due to airborne virus spreading. This study shows the accuracy of the new measurement system and its ability to compare aerosol reduction measures such as regular ventilation or the use of a room air purifier.  相似文献   
6.
In this paper, a robust model-free controller for a grid-connected photovoltaic (PV) system is designed. The system consists of a PV generator connected to a three-phase grid by a DC/AC converter. The control objectives of the overall system are to extract maximum power from the PV source, to control reactive power exchange and to improve the quality of the current injected into the grid. The model-free control technique is based on the use of an ultra-local model instead of the dynamic model of the overall system. The local model is continuously updated based on a numerical differentiator using only the input–output behavior of the controlled system. The model-free controller consists of a classical feedback controller and a compensator for the effects of internal parameter changes and external disturbances. Simulation results illustrate the efficiency of the controller for grid-connected PV systems.  相似文献   
7.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1 750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中。通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可靠,达到试验预期目的。  相似文献   
8.
朱宏  张蔚翔  郭成英 《中州煤炭》2021,(11):239-243
为应对电力系统安全分析中的停机问题,基于概率法的方式,将常用的确定停机计算与加入了概率法的概率停机进行比较,研究了二者的区别与其在长期投资方向的不同。在进行电力系统停机分析时,通常会分别从确定停机与概率停机的角度出发,对其应急状态下的潮流进行计算。但前者的方法可能导致极低概率的停机事件被忽略,进而影响长期的资金投资。通过加入概率法的计算,使得对单个停机事件的判定由其具体的频率来确定,增加了系统运行的稳定性。  相似文献   
9.
In this paper, a salinity gradient solar pond (SGSP) is used to harness the solar energy for hydrogen production through two cycles. The first cycle includes an absorption power cycle (APC), a proton exchange membrane (PEM) electrolyzer, and a thermoelectric generator (TEG) unit; in the second one, an organic Rankine cycle (ORC) with the zeotropic mixture is used instead of APC. The cycles are analyzed through the thermoeconomic vantage point to discover the effect of key decision variables on the cycles’ performance. Finally, NSGA-II is used to optimize both cycles. The results indicate that employing ORC with zeotropic mixture leads to a better performance in comparison to utilizing APC. For the base mode, unit cost product (UCP), exergy, and energy efficiency when APC is employed are 59.9 $/GJ, 23.73%, and 3.84%, respectively. These amounts are 47.27 $/GJ, 29.48%, and 5.86% if ORC with the zeotropic mixture is utilized. The APC and ORC generators have the highest exergy destruction rate which is equal to 6.18 and 10.91 kW. In both cycles, the highest investment cost is related to the turbine and is 0.8275 $/h and 0.976 $/h for the first and second cycles, respectively. In the optimum state the energy efficiency, exergy efficiency, UCP, and H2 production rate of the system enhances 42.44%, 27.54%,15.95%, and 38.24% when ORC with the zeotropic mixture is used. The maximum H2 production is 0.47 kg/h, and is obtained when the mass fraction of R142b, LCZ temperature, pumps pressure ratio, generator bubble point temperature are 0.603, 364.35 K, 2.12, 337.67 K, respectively.  相似文献   
10.
《Ceramics International》2022,48(8):10921-10931
Coatings were obtained by vacuum electro-spark alloying (VESA), pulsed cathodic arc evaporation (PCAE), magnetron sputtering (MS) techniques and VESA-PCAE-MS hybrid technology using Cr3C2–NiAl electrodes. The structure of the coatings was analyzed using scanning and transmission electron microscopy, X-ray diffraction and energy-dispersive spectroscopy. Mechanical properties were determined by nanoindentation, while tribological properties were assessed using pin-on-disk tribometer. Corrosion resistance was estimated by voltammetry in 1 N H2SO4 and 3.5%NaCl solutions. Oxidation resistance tests were performed at 800°С in air. The VESA coating had the highest thickness, low friction coefficient and high wear resistance. PCAE coating demonstrated the highest hardness (24 GPa) and elastic recovery (59%), oxidation resistance and superior corrosion resistance both in 1 N H2SO4 (icorr = 70 μА/cm2) and 3.5%NaCl (icorr = 0.74 μА/cm2) solutions. The MS coating had average mechanical properties and low corrosion current density (71 μА/cm2) in 1 N H2SO4. Deposition of coatings using VESA-PCAE-MS hybrid technology led to an increase in corrosion and oxidation resistance at least by 1.5 times in comparison with the VESA coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号