首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51070篇
  免费   7199篇
  国内免费   5290篇
电工技术   4715篇
技术理论   3篇
综合类   5860篇
化学工业   2583篇
金属工艺   1459篇
机械仪表   3178篇
建筑科学   1511篇
矿业工程   1028篇
能源动力   1353篇
轻工业   871篇
水利工程   877篇
石油天然气   903篇
武器工业   542篇
无线电   8762篇
一般工业技术   3121篇
冶金工业   1033篇
原子能技术   171篇
自动化技术   25589篇
  2024年   402篇
  2023年   1351篇
  2022年   2181篇
  2021年   2443篇
  2020年   2482篇
  2019年   1816篇
  2018年   1457篇
  2017年   1645篇
  2016年   1726篇
  2015年   1938篇
  2014年   2690篇
  2013年   3005篇
  2012年   3250篇
  2011年   3633篇
  2010年   2861篇
  2009年   3284篇
  2008年   3610篇
  2007年   3809篇
  2006年   3210篇
  2005年   2874篇
  2004年   2404篇
  2003年   1996篇
  2002年   1696篇
  2001年   1496篇
  2000年   1311篇
  1999年   1098篇
  1998年   890篇
  1997年   734篇
  1996年   601篇
  1995年   451篇
  1994年   331篇
  1993年   242篇
  1992年   168篇
  1991年   93篇
  1990年   70篇
  1989年   40篇
  1988年   30篇
  1987年   21篇
  1986年   30篇
  1985年   43篇
  1984年   37篇
  1983年   35篇
  1982年   40篇
  1979年   6篇
  1978年   3篇
  1976年   2篇
  1963年   3篇
  1960年   2篇
  1959年   4篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A key element in solving real-life data science problems is selecting the types of models to use. Tree ensemble models (such as XGBoost) are usually recommended for classification and regression problems with tabular data. However, several deep learning models for tabular data have recently been proposed, claiming to outperform XGBoost for some use cases. This paper explores whether these deep models should be a recommended option for tabular data by rigorously comparing the new deep models to XGBoost on various datasets. In addition to systematically comparing their performance, we consider the tuning and computation they require. Our study shows that XGBoost outperforms these deep models across the datasets, including the datasets used in the papers that proposed the deep models. We also demonstrate that XGBoost requires much less tuning. On the positive side, we show that an ensemble of deep models and XGBoost performs better on these datasets than XGBoost alone.  相似文献   
2.
5G蜂窝网络发展迅猛,其覆盖面积将逐渐增大,因此使用5G蜂窝网络进行定位是有研究潜力的研究方向。本文提出一种新的深度学习技术来实现高效、高精度和低占用的定位,以代替传统指纹定位过程中繁重的指纹库生成以及距离计算。该方法建立了一个特殊的卷积神经网络,并根据5G天线信号的接收信号强度指示、相位和到达角等特征量,选择合适的输入数据格式构造样本组建训练集,对该卷积神经网络进行训练。训练得到的卷积神经网络可以替代指纹定位中的庞大指纹库,非常有利于直接在5G移动设备端实现定位。虽然卷积神经网络在训练过程中需要大量时间,但在训练完毕后直接进行分类定位的速度非常快,可以保障定位实现的实时性。本文所实现的卷积神经网络权重与偏置所占内存不到0.5 MB,且能够在实际应用环境中以95%的定位准确率以及0.1 m的平均定位精度实现高精度定位。  相似文献   
3.
In this paper, we strive to propose a self-interpretable framework, termed PrimitiveTree, that incorporates deep visual primitives condensed from deep features with a conventional decision tree, bridging the gap between deep features extracted from deep neural networks (DNNs) and trees’ transparent decision-making processes. Specifically, we utilize a codebook, which embeds the continuous deep features into a finite discrete space (deep visual primitives) to distill the most common semantic information. The decision tree adopts the spatial location information and the mapped primitives to present the decision-making process of the deep features in a tree hierarchy. Moreover, the trained interpretable PrimitiveTree can inversely explain the constituents of the deep features, highlighting the most critical and semantic-rich image patches attributing to the final predictions of the given DNN. Extensive experiments and visualization results validate the effectiveness and interpretability of our method.  相似文献   
4.
To save bandwidth and storage space as well as speed up data transmission, people usually perform lossy compression on images. Although the JPEG standard is a simple and effective compression method, it usually introduces various visually unpleasing artifacts, especially the notorious blocking artifacts. In recent years, deep convolutional neural networks (CNNs) have seen remarkable development in compression artifacts reduction. Despite the excellent performance, most deep CNNs suffer from heavy computation due to very deep and wide architectures. In this paper, we propose an enhanced wide-activated residual network (EWARN) for efficient and accurate image deblocking. Specifically, we propose an enhanced wide-activated residual block (EWARB) as basic construction module. Our EWARB gives rise to larger activation width, better use of interdependencies among channels, and more informative and discriminative non-linearity activation features without more parameters than residual block (RB) and wide-activated residual block (WARB). Furthermore, we introduce an overlapping patches extraction and combination (OPEC) strategy into our network in a full convolution way, leading to large receptive field, enforced compatibility among adjacent blocks, and efficient deblocking. Extensive experiments demonstrate that our EWARN outperforms several state-of-the-art methods quantitatively and qualitatively with relatively small model size and less running time, achieving a good trade-off between performance and complexity.  相似文献   
5.
电力系统维护是电力系统稳定运行的重要保障,应用智能算法的无人机电力巡检则为电力系统维护提供便捷。电力线提取是自主电力巡检以及保障飞行器低空飞行安全的关键技术,结合深度学习理论进行电力线提取是电力巡检的重要突破点。本文将深度学习方法用于电力线提取任务,结合电力线图像特点嵌入改进的图像输入策略和注意力模块,提出一种基于阶段注意力机制的电力线提取模型(SA-Unet)。本文提出的SA-Unet模型编码阶段采用阶段输入融合策略(Stage input fusion strategy, SIFS),充分利用图像的多尺度信息减少空间位置信息丢失。解码阶段通过嵌入阶段注意力模块(Stage attention module,SAM)聚焦电力线特征,从大量信息中快速筛选出高价值信息。实验结果表明,该方法在复杂背景的多场景中具有良好的性能。  相似文献   
6.
As the first review in this field, this paper presents an in-depth mathematical view of Intelligent Flight Control Systems (IFCSs), particularly those based on artificial neural networks. The rapid evolution of IFCSs in the last two decades in both the methodological and technical aspects necessitates a comprehensive view of them to better demonstrate the current stage and the crucial remaining steps towards developing a truly intelligent flight management unit. To this end, in this paper, we will provide a detailed mathematical view of Neural Network (NN)-based flight control systems and the challenging problems that still remain. The paper will cover both the model-based and model-free IFCSs. The model-based methods consist of the basic feedback error learning scheme, the pseudocontrol strategy, and the neural backstepping method. Besides, different approaches to analyze the closed-loop stability in IFCSs, their requirements, and their limitations will be discussed in detail. Various supplementary features, which can be integrated with a basic IFCS such as the fault-tolerance capability, the consideration of system constraints, and the combination of NNs with other robust and adaptive elements like disturbance observers, would be covered, as well. On the other hand, concerning model-free flight controllers, both the indirect and direct adaptive control systems including indirect adaptive control using NN-based system identification, the approximate dynamic programming using NN, and the reinforcement learning-based adaptive optimal control will be carefully addressed. Finally, by demonstrating a well-organized view of the current stage in the development of IFCSs, the challenging issues, which are critical to be addressed in the future, are thoroughly identified. As a result, this paper can be considered as a comprehensive road map for all researchers interested in the design and development of intelligent control systems, particularly in the field of aerospace applications.  相似文献   
7.
With the emergence of large-scale knowledge base, how to use triple information to generate natural questions is a key technology in question answering systems. The traditional way of generating questions require a lot of manual intervention and produce lots of noise. To solve these problems, we propose a joint model based on semi-automated model and End-to-End neural network to automatically generate questions. The semi-automated model can generate question templates and real questions combining the knowledge base and center graph. The End-to-End neural network directly sends the knowledge base and real questions to BiLSTM network. Meanwhile, the attention mechanism is utilized in the decoding layer, which makes the triples and generated questions more relevant. Finally, the experimental results on SimpleQuestions demonstrate the effectiveness of the proposed approach.  相似文献   
8.
基于神经网络和遗传算法的锭子弹性管性能优化   总被引:1,自引:0,他引:1  
为得到减振弹性管对下锭胆的支承弹性和锭子高速运动下的稳定性等性能的最优匹配效率,依据减振弹性管的等效抗弯刚度及底部等效刚度系数公式,利用MatLab数值分析软件构建弹性管抗弯刚度和底部挠度数学模型。首先,结合Isight优化软件基于径向基神经网络构建其近似模型,且使精度达到可接受水平,并以模型的关键结构参数弹性模量、螺距、槽宽、壁厚为设计变量,结合遗传算法对弹性管抗弯刚度和底部挠度进行多目标优化设计,得到Pareto最优解集和Pareto前沿图,确定出减振弹性管结构工艺参数的优化方案。通过对优化数据进行分析发现,该方案在保证减振弹性管弹性的同时,其底部振幅明显减弱。  相似文献   
9.
Topic modeling is a popular analytical tool for evaluating data. Numerous methods of topic modeling have been developed which consider many kinds of relationships and restrictions within datasets; however, these methods are not frequently employed. Instead many researchers gravitate to Latent Dirichlet Analysis, which although flexible and adaptive, is not always suited for modeling more complex data relationships. We present different topic modeling approaches capable of dealing with correlation between topics, the changes of topics over time, as well as the ability to handle short texts such as encountered in social media or sparse text data. We also briefly review the algorithms which are used to optimize and infer parameters in topic modeling, which is essential to producing meaningful results regardless of method. We believe this review will encourage more diversity when performing topic modeling and help determine what topic modeling method best suits the user needs.  相似文献   
10.
刘影  孙凤丽  郭栋  张泽奇  杨隽 《测控技术》2020,39(12):111-115
针对软件缺陷预测时缺陷数据集中存在的类别分布不平衡问题,结合上采样算法SMOTE与Edited Nearest Neighbor (ENN) 数据清洗策略,提出了一种基于启发式BP神经网络算法的软件缺陷预测模型。模型中采用上采样算法SMOTE增加少数类样本以改善项目中的数据不平衡状况,并针对采样后数据噪声问题进行ENN数据清洗,结合基于启发式学习的模拟退火算法改进四层BP神经网络后建立分类预测模型,在AEEEM数据库上使用交叉验证对提出的方案进行性能评估,结果表明所提出的算法能够有效提高模型在预测类不平衡数据时的分类准确度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号