首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25144篇
  免费   2352篇
  国内免费   923篇
电工技术   1243篇
综合类   1036篇
化学工业   4531篇
金属工艺   1590篇
机械仪表   1834篇
建筑科学   1326篇
矿业工程   597篇
能源动力   984篇
轻工业   1741篇
水利工程   315篇
石油天然气   960篇
武器工业   115篇
无线电   3520篇
一般工业技术   4220篇
冶金工业   1358篇
原子能技术   230篇
自动化技术   2819篇
  2024年   85篇
  2023年   466篇
  2022年   730篇
  2021年   1195篇
  2020年   894篇
  2019年   759篇
  2018年   904篇
  2017年   905篇
  2016年   952篇
  2015年   1028篇
  2014年   1261篇
  2013年   1582篇
  2012年   1706篇
  2011年   1904篇
  2010年   1557篇
  2009年   1545篇
  2008年   1397篇
  2007年   1160篇
  2006年   1100篇
  2005年   939篇
  2004年   731篇
  2003年   719篇
  2002年   676篇
  2001年   555篇
  2000年   526篇
  1999年   511篇
  1998年   523篇
  1997年   395篇
  1996年   374篇
  1995年   289篇
  1994年   225篇
  1993年   145篇
  1992年   125篇
  1991年   85篇
  1990年   87篇
  1989年   79篇
  1988年   49篇
  1987年   42篇
  1986年   40篇
  1985年   29篇
  1984年   22篇
  1983年   16篇
  1982年   16篇
  1981年   22篇
  1980年   13篇
  1979年   10篇
  1978年   7篇
  1977年   7篇
  1976年   13篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The effects of high-pressure-modified soy 11S globulin (0.1, 200, and 400 MPa) on the gel properties, water-holding capacity, and water mobility of pork batter were investigated. The high-pressure-modified soy 11S globulin significantly increased (P < 0.05) the emulsion stability, cooking yield, hardness, springiness, chewiness, resilience, cohesiveness, the a* and b* values, and the G′ and G′′ values of pork batter at 80 °C, compared with those of 0.1 MPa-modified globulin. In contrast, the centrifugal loss and initial relaxation time of T2b, T21, and T22 significantly decreased (P < 0.05). Meanwhile, the microstructure was denser, and the voids were smaller and more uniform compared with those of 0.1 MPa-modified globulin. In addition, the sample with 11S globulin modified at 400 MPa had the best water-holding capacity, gel structure, and gel properties among the samples. Overall, the use of high-pressure-modified soy 11S globulin improved the gel properties and water-holding capacity of pork batter, especially under 400 MPa.  相似文献   
2.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
3.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
4.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
5.
A recent development in tactile technology enables an improvement in the appreciation of the visual arts for people with visual impairment (PVI). The tactile sense, in conjunction with, or a possibly as an alternative to, the auditory sense, would allow PVIs to approach artwork in a more self‐driven and engaging way that would be difficult to achieve with just an auditory stimulus. Tactile colour pictograms (TCPs), which are raised geometric patterns, are ideographic characters that are designed to enable PVIs to identify colours and interpret information by touch. In this article, three TCPs are introduced to code colours in the Munsell colour system. Each colour pattern consists of a basic cell size of 10 mm × 10 mm to represent the patterns consistently in terms of regular shape. Each TCP consists of basic geometric patterns that are combined to create primary, secondary, and tertiary colour pictograms of shapes indicating colour hue, intensity and lightness. Each TCP represents 29 colours including six hues; they were then further expanded to represent 53 colours. Two of them did not increase the cell size, the other increased the cell size 1.5 times for some colours, such as yellow‐orange, yellow, blue, and blue‐purple. Our proposed TCPs use a slightly larger cell size compared to most tactile patterns currently used to indicate colour, but code for more colours. With user experience and identification tests, conducted with 23 visually impaired adults, the effectiveness of the TCPs suggests that they were helpful for the participants.  相似文献   
6.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
7.
Tian  Dating  Zhou  Yuchi  An  Kai  Kang  Huiting 《Polymer Bulletin》2020,77(4):1847-1868
Polymer Bulletin - Preparation of konjac glucomannan-grafted poly(trimethyl allyl ammonium chloride) (KGM-g-PTMAAC) was carried out using KGM as polysaccharide matrix and TMAAC as cationic...  相似文献   
8.
The Journal of Supercomputing - Spark is one of the most widely used systems for the distributed processing of big data. Its performance bottlenecks are mainly due to the network I/O, disk I/O, and...  相似文献   
9.
Wireless Personal Communications - In recent years, many wireless communication services have become indispensable for our daily life, such as voice telephoning and the internet surfing. However,...  相似文献   
10.
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm−2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号