首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73684篇
  免费   5670篇
  国内免费   2756篇
电工技术   3935篇
技术理论   6篇
综合类   4449篇
化学工业   12795篇
金属工艺   3984篇
机械仪表   4904篇
建筑科学   5192篇
矿业工程   2403篇
能源动力   2256篇
轻工业   4842篇
水利工程   1007篇
石油天然气   5280篇
武器工业   470篇
无线电   7656篇
一般工业技术   9462篇
冶金工业   3809篇
原子能技术   856篇
自动化技术   8804篇
  2024年   233篇
  2023年   1214篇
  2022年   2124篇
  2021年   2926篇
  2020年   2183篇
  2019年   1934篇
  2018年   2271篇
  2017年   2505篇
  2016年   2091篇
  2015年   2729篇
  2014年   3457篇
  2013年   4249篇
  2012年   4394篇
  2011年   4905篇
  2010年   4222篇
  2009年   3994篇
  2008年   3921篇
  2007年   3776篇
  2006年   3840篇
  2005年   3485篇
  2004年   2315篇
  2003年   2105篇
  2002年   1890篇
  2001年   1658篇
  2000年   1819篇
  1999年   2055篇
  1998年   1776篇
  1997年   1423篇
  1996年   1409篇
  1995年   1196篇
  1994年   951篇
  1993年   717篇
  1992年   545篇
  1991年   421篇
  1990年   323篇
  1989年   249篇
  1988年   221篇
  1987年   139篇
  1986年   101篇
  1985年   89篇
  1984年   59篇
  1983年   35篇
  1982年   42篇
  1981年   28篇
  1980年   23篇
  1979年   13篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
  1945年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The effects of cellulose microfibres (CMFs, Average size: 100 ± 5 μm) and cellulose nanofibres (CNFs, Average size: 60 ± 3 nm) on the properties of myofibrillar protein (MP) gels from duck breast meat were studied. The results demonstrated that CMFs and CNFs were mostly connected to MP by non-covalent bonds, the diffusion and cross-linking of MP molecules was promoted, and a denser and more complete gel network was formed. With the increases of CMFs and CNFs concentration (0–10%), the hardness was increased by 13.15% and 19.78% for CMFs10% and CNFs10% gels, respectively, and the elasticity was increased by 40% and 80%, respectively. At the same concentration (0–10%), the increase in gel hardness, viscoelasticity and immobilised water content was greater in the CNFs-MP group than in the CMFs-MP group. The CNFs-MP group had a tighter gel network, and CNFs had a better potential to improve the gelation performance of MP.  相似文献   
3.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
4.
Sun  Junli  Wang  Huaibin  Li  Yang  Zhao  Min 《Journal of Porous Materials》2021,28(3):889-894
Journal of Porous Materials - Co3O4 has been widely investigated as a promising candidate anode material for lithium-ion batteries. We report on the porous Co3O4 column synthesized via a simple...  相似文献   
5.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   
6.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
7.
刘文剑 《今日消防》2021,6(12):41-43
改革转制以来,消防救援队伍被赋予了更加多样化的职能职责,各类专业化消防装备的作用愈发凸显,其不但是消防救援队伍及时完成各类灭火救援任务的基本保障,也是日常消防救援训练的物资基础.因而,如何构建消防救援队伍装备运行保障体系,确保关键时刻能充分发挥使用价值,成为了当下的一个重要课题.基于此,文章简单分析加强消防装备运行保障能力的相关知识,希望对相关领域研究有所帮助.  相似文献   
8.
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions (ACI) and liquid densities of aqueous solutions.This new model is applied to model water + NaCl binary system and water + gas +NaCl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the exper-imental data of ACI,mean ionic activity coefficients (MIAC) and liquid densities of water + NaCl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous NaCl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6% and 1.4% compared to experimental ref-erence values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of NaCl on gases are ana-lyzed and discussed.  相似文献   
9.
Bulletin of Engineering Geology and the Environment - Bio-cementation is currently applied to solidify sandy soils, but only few studies use it to cement loess soil particles. In this study, the...  相似文献   
10.
Ultrawide band gap semiconductor materials have attracted considerable attention in recent years owing to their great potential in the photocatalytic field. In this study, Zn-doped Ga2O3 nanofibers with various concentrations were synthesized via electrospinning; they exhibited a superior photocatalytic degradation performance of rhodamine B dye compared to that of undoped Ga2O3 nanofibers. The Zn dopant replaced Ga sites via replacement doping, which could increase the concentration of oxygen vacancies and lead to enhanced photocatalytic properties. When the Zn concentration increased, a Ga2O3/ZnGa2O4 hybrid structure formed, which could further enhance the photocatalytic performance. The separation of photogenerated carriers due to Zn doping and heterojunctions were the primary causes of the enhanced photocatalytic performance. This study provides experimental data for the fabrication of high-performance photocatalysts based on Ga2O3 nanomaterials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号