首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15976篇
  免费   1409篇
  国内免费   871篇
电工技术   1370篇
综合类   1267篇
化学工业   2853篇
金属工艺   832篇
机械仪表   609篇
建筑科学   993篇
矿业工程   691篇
能源动力   1097篇
轻工业   497篇
水利工程   206篇
石油天然气   1568篇
武器工业   122篇
无线电   2421篇
一般工业技术   1711篇
冶金工业   480篇
原子能技术   205篇
自动化技术   1334篇
  2024年   39篇
  2023年   256篇
  2022年   351篇
  2021年   471篇
  2020年   537篇
  2019年   461篇
  2018年   387篇
  2017年   516篇
  2016年   535篇
  2015年   569篇
  2014年   926篇
  2013年   924篇
  2012年   1143篇
  2011年   1235篇
  2010年   939篇
  2009年   918篇
  2008年   894篇
  2007年   1011篇
  2006年   982篇
  2005年   787篇
  2004年   711篇
  2003年   647篇
  2002年   539篇
  2001年   445篇
  2000年   354篇
  1999年   307篇
  1998年   222篇
  1997年   181篇
  1996年   176篇
  1995年   143篇
  1994年   135篇
  1993年   95篇
  1992年   92篇
  1991年   56篇
  1990年   54篇
  1989年   41篇
  1988年   29篇
  1987年   23篇
  1986年   14篇
  1985年   23篇
  1984年   18篇
  1983年   11篇
  1982年   16篇
  1981年   12篇
  1980年   11篇
  1979年   3篇
  1978年   3篇
  1964年   2篇
  1958年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
2.
为了探索三维石墨烯-碳纳米管(G-CNTs)/水泥净浆的压敏性能,采用四电极法研究了荷载作用下GCNTs/水泥净浆的电阻率变化,并分析不同G-CNTs掺量、加载幅度、加载速度以及恒定荷载对电阻率变化的影响。研究表明:随着G-CNTs掺量的增加,电阻率呈先减小后稳定的变化趋势,在G-CNTs掺量由0.2wt%增加至1.6wt%时,电阻率下降51.8%;电阻率与温度呈负相关;G-CNTs掺量高于0.8wt%时可以显著提高水泥净浆的压敏性能,且电阻率变化率与应力应变有明显的对应关系,1.2wt%G-CNTs掺量下试件的应力灵敏系数和应变灵敏系数分别为2.3%/MPa和291;G-CNTs/水泥净浆电阻率变化率幅值随着加载幅度增大而相应增加,其电阻率变化率曲线在不同加载速度以及恒定荷载作用下均与应力-应变曲线一一对应,具有良好的压敏特性。  相似文献   
3.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
4.
Biomass gasification technology under microwave irradiation is a new and novel method, and the energy conversion performances during the process play a guiding role in improving the energy conversion efficiencies and developing the gasification simulation models. In order to improve the energy utilization efficiency of microwave biomass gasification system, this study investigated and presented the energy conversion performances during biomass gasification process under microwave irradiation, and these were materialized through detailing (a) the energy conversion performance in the microwave heating stage, and (b) the energy conversion performance in the microwave assisted biomass gasification stage. Different forms of energies in the biomass microwave gasification process were calculated by the method given in this study based on the experimental data. The results showed that the useful energy (energy in silicon carbide (SiC), 18.73 kJ) accounted for 31.22% of the total energy input (electrical energy, 60.00 kJ) in the heating stage, and the useful energy (energy in the products, 758.55 kJ) accounted for 63.41% of the total energy input (electrical and biomass energy, 1196.28 kJ) in the gasification stage. During the whole biomass gasification process under microwave irradiation, the useful energy output (energy in the products, 758.55 kJ) accounted for 60.38% of the total energy input (electrical and biomass energy, 1256.28 kJ), and the energy in the gas (523.40 kJ) product played a dominate role in product energy (758.55 kJ). The energy loss mainly included the heat loss in the gas flow (89.20 kJ), magnetron loss (191.80 kJ) and microwave dissipation loss (198.00 kJ), which accounted for 7.10%, 15.27% and 15.76% of the total energy, respectively. The contents detailed in this study not only presented the energy conversion performances during microwave assisted gasification process but also supplied important data for developing gasification simulation models.  相似文献   
5.
In this article, the silver-plated polyamide fabrics (SPPAFs) with high electroconductibility and shielding effectiveness were fabricated by using in situ reduction of polydopamine and chemical silvering. The effects of SPPAFs dopamine (C8H11O2N) and silver nitrate (AgNO3) concentration on surface resistivity and electromagnetic interference shielding effectiveness were studied. The results showed that the surface resistivity of SPPAFs can reach a minimum value of 0.06 ± 0.014 Ω cm−1, when C8H11O2N concentration is 4 g L−1 and the AgNO3 concentration is 120 g L−1. The shielding effectiveness of SPPAFs in the wide frequency range of 10–3000 MHz increases with the increase in the concentration of AgNO3, and increases first and stabilizes afterward with increasing C8H11O2N concentration. When the concentration of C8H11O2N and AgNO3 is 3 and 120 g L−1, respectively, mean shielding effectiveness values in the low-, medium-, and high-frequency bands are 71.3, 73.8, and 76.1 dB, respectively. Moreover, the mean shielding effectiveness values is 83.79 dB in the frequency range of 1.2–2.3 GHz. The dominant shielding mechanism of SPPAFs is the reflected electromagnetic waves and the absorption shielding effectiveness is less than 2 dB. The average electromagnetic shielding values of SPPAFs are above 67 dB after 16 weeks of storage, when C8H11O2N concentration is 4 g L−1 and the AgNO3 concentration is 80 and 100 g L−1. The prepared SPPAFs show promising applications in military textiles and smart wearable clothing. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48227.  相似文献   
6.
Replacement of precious single metal catalysts with cost-effective, highly-dispersed composite catalysts for catalytic hydrothermal conversion of residue holds tremendous promise for the residue upgrading technologies. Organic metals were added to the feed as the oil-soluble precursors, and transformed into the catalytic active phases in this work. Physical properties and structures of the composite catalysts had been investigated by X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope and transmission electron microscopy. The composite catalysts were found to be highly efficient in the catalytic hydrothermal conversion of both model compound and residue. Increased metal dispersion and synergistic effects of two metals played indispensable roles in such catalytic system. Results showed that under the test conditions in the article, the catalyst had the best catalytic performance when the mass ratio of molybdenum to iron was 1.5.  相似文献   
7.
The current study establishes the unprecedented involvement in the evolution and production of novel core–shell nanocomposites composed of nanosized titanium dioxide and aniline‐o‐phenylenediamine copolymer. TiO2@copoly(aniline and o‐phenylenediamine) (TiO2@PANI‐o‐PDA) core–shell nanocomposites were chemically synthesized in a molar ratio of 5:1 of the particular monomers and several weights of nano‐TiO2 via oxidative copolymerization. The construction of the TiO2@PANI‐o‐PDA core–shell nanocomposites was ascertained from Fourier transform IR spectroscopy, UV–visible spectroscopy and XRD. A reasonable thermal behavior for the original copolymer and the TiO2@PANI‐o‐PDA core–shell nanocomposites was investigated. The bare PANI‐o‐PDA copolymer was thermally less stable than the TiO2@PANI‐o‐PDA nanocomposites. The core–shell feature of the nanocomposites was found to have core and shell sizes of 17 nm and 19–26 nm, respectively. In addition, it was found that the addition of a high ratio of TiO2 nanoparticles increases the electrical conductivity and consequently lowers the electrical resistivity of the TiO2@PANI‐o‐PDA core–shell nanocomposites. The hybrid photocatalysts exhibit a dramatic photocatalytic efficacy of methylene blue degradation under solar light irradiation. A plausible interpretation of the photocatalytic degradation results of methylene blue is also demonstrated. Our setup introduces a facile, inexpensive, unique and efficient technique for developing new core–shell nanomaterials with various required functionalities and colloidal stabilities. © 2018 Society of Chemical Industry  相似文献   
8.
The enzymatic conversion of lignins, possibly in combination with electrochemical oxidation, makes aromatics such as syringol, guaiacol, vanillin and catechol available in the qualities required by the fragrance industry. The lignins were obtained by soda digestion from wheat straw and Miscanthus, characterized and then converted with laccases. The overall yield amounted up to 9 wt % with a product spectrum confined to four substances. Catechol was the major product, with a fraction of ≈75 %. It can easily be isolated by extraction with acetone.  相似文献   
9.
魏月刚 《变压器》2015,(12):1-6
介绍了高压变频调速变压器及高压变频器系统的基本原理及结构,详细论述了系统各组成部分的功能,并进行了举例说明。  相似文献   
10.
Reactive hot pressing was utilized to synthesize and densify four ZrB2 ceramics with impurity contents low enough to avoid obscuring the effects of dopants on thermal properties. Nominally pure ZrB2 had a thermal conductivity of 141 ± 3 W/m K at 25 °C. Additions of 3 at% of Ti, Y, or Hf decreased the thermal conductivity by 20 %, 30 %, and 40 %, respectively. The thermal conductivity of (Zr,Hf)B2 was similar to ZrB2 synthesized from commercial powders containing the natural abundance of Hf as an impurity. This is the first study to demonstrate that Ti and Y additions decrease the thermal conductivity of ZrB2 ceramics and report intrinsic values for thermal conductivity and electrical resistivity of ZrB2 containing transition metal additions. Previous studies were unable to detect these effects because the natural abundance of Hf present masked the effects of these additions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号