首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55962篇
  免费   7744篇
  国内免费   5121篇
电工技术   5056篇
技术理论   1篇
综合类   6685篇
化学工业   7524篇
金属工艺   2337篇
机械仪表   4882篇
建筑科学   5957篇
矿业工程   2044篇
能源动力   2069篇
轻工业   2553篇
水利工程   1790篇
石油天然气   1892篇
武器工业   1034篇
无线电   4987篇
一般工业技术   7356篇
冶金工业   1868篇
原子能技术   472篇
自动化技术   10320篇
  2024年   292篇
  2023年   1036篇
  2022年   1684篇
  2021年   1911篇
  2020年   2040篇
  2019年   1671篇
  2018年   1716篇
  2017年   2069篇
  2016年   2380篇
  2015年   2501篇
  2014年   3445篇
  2013年   3572篇
  2012年   4497篇
  2011年   4418篇
  2010年   3456篇
  2009年   3500篇
  2008年   3271篇
  2007年   4055篇
  2006年   3534篇
  2005年   2852篇
  2004年   2351篇
  2003年   2041篇
  2002年   1695篇
  2001年   1512篇
  2000年   1328篇
  1999年   1067篇
  1998年   866篇
  1997年   757篇
  1996年   604篇
  1995年   506篇
  1994年   451篇
  1993年   344篇
  1992年   284篇
  1991年   246篇
  1990年   178篇
  1989年   176篇
  1988年   117篇
  1987年   75篇
  1986年   53篇
  1985年   45篇
  1984年   42篇
  1983年   38篇
  1982年   33篇
  1981年   23篇
  1980年   23篇
  1979年   22篇
  1977年   7篇
  1975年   5篇
  1974年   5篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
2.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
3.
4.
A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the absorption of heparin after oral administration, in which heparin was compounded with phospholipids to achieve better fat solubility in the form of heparin-phospholipid (HEP-Pc) complex. HEP-Pc complex was prepared using the solvent evaporation method, which increased the solubility of heparin in n-octanol. The successful preparation of HEP-Pc complex was confirmed by differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, NMR, and SEM. A heparin lipid microemulsion (HEP-LM) was prepared by high-pressure homogenization and characterized. HEP-LM can enhance the absorption of heparin after oral administration, significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) in mice, and reduce fibrinogen (FIB) content. All these outcomes indicate that HEP-LM has great potential as an oral heparin formulation.  相似文献   
5.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
6.
With the increase of industrialization and urbanization, humankind faces massive oil-based pollution due to tanker accidents, human error, and natural disasters. For this, hydrophobic sorbents are fabricated and their applications for the removal of oil from polluted water sources are investigated. These hydrophobic sorbents are prepared by the condensation reaction of poly(dimethylsiloxane) and tris[3-(trimethoxysilyl)propyl]isocyanurate cross-linker via bulk polymerization. The obtained sorbents exhibit high oil sorption capacity, fast absorption–desorption kinetics, and great reusability. Moreover, they can selectively absorb oil from the water surface, thus making them practical for water clean-up applications.  相似文献   
7.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
8.
Within the framework of the effective-mass approximation and the dipole approximation, considering the three-dimensional confinement of the electron and hole and the strong built-in electric field(BEF) in strained wurtzite Zn O/Mg0:25Zn0:75O quantum dots(QDs), the optical properties of ionized donor-bound excitons(D+, X)are investigated theoretically using a variational method. The computations are performed in the case of finite band offset. Numerical results indicate that the optical properties of(D+, X) complexes sensitively depend on the donor position, the QD size and the BEF. The binding energy of(D+, X) complexes is larger when the donor is located in the vicinity of the left interface of the QDs, and it decreases with increasing QD size. The oscillator strength reduces with an increase in the dot height and increases with an increase in the dot radius. Furthermore, when the QD size decreases, the absorption peak intensity shows a marked increment, and the absorption coefficient peak has a blueshift. The strong BEF causes a redshift of the absorption coefficient peak and causes the absorption peak intensity to decrease remarkably. The physical reasons for these relationships have been analyzed in depth.  相似文献   
9.
In this paper, the dynamic behaviors on the basis of simulation for high-purity heat integrated air separation column (HIASC) are studied. A nonlinear generic model control (GMC) scheme is proposed based on the nonlinear behavior analyses of a HIASC process, and an adaptive generic model control (AGMC) scheme is further presented to correct the model parameters online. Related internal model control (IMC) scheme and multi-loop PID (M-PID) scheme are also developed as the comparative base. The comparative researches are carried out among these linear and nonlinear control schemes in detail. The simulation research results show that the proposed AGMC schemes present advantages in both servo control and regulatory control for the high-purity HIASC.  相似文献   
10.
The influence of the environment on the excited state transitions of meso-tetrakis(p-sulfonatophenyl) porphyrin (TPPS) is reported. TPPS was investigated in protonated and non-protonated forms, and in the presence of the cationic cetyltrimethylammonium bromide (CTAB) micelles. The singlet excited-state absorption spectra were measured by using the white-light continuum Z-scan technique and the triplet–triplet absorption spectra were acquired employing an association of laser flash photolysis and Z-scan techniques. Our results show that the perseveration of the molecular symmetry, upon excitation, depends on the state of multiplicity of the molecules, as well as on the environment and structural characteristics of the porphyrin. Additionally, it was observed that for excited molecules, the ring distortion caused by the protonation of porphyrin ring has great influence on the changes observed for the symmetry and vibronic structure. The results clearly show that the porphyrin investigated is a promising candidate for optical limiting applications for all investigated environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号