首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57758篇
  免费   4338篇
  国内免费   5906篇
电工技术   3684篇
技术理论   67篇
综合类   7015篇
化学工业   6953篇
金属工艺   1227篇
机械仪表   3005篇
建筑科学   19263篇
矿业工程   2255篇
能源动力   2124篇
轻工业   1127篇
水利工程   2394篇
石油天然气   1471篇
武器工业   831篇
无线电   2656篇
一般工业技术   5098篇
冶金工业   2036篇
原子能技术   184篇
自动化技术   6612篇
  2024年   218篇
  2023年   849篇
  2022年   1159篇
  2021年   1550篇
  2020年   1685篇
  2019年   1256篇
  2018年   1200篇
  2017年   1471篇
  2016年   1816篇
  2015年   1895篇
  2014年   5030篇
  2013年   3657篇
  2012年   4152篇
  2011年   4363篇
  2010年   3607篇
  2009年   3952篇
  2008年   3764篇
  2007年   4686篇
  2006年   4019篇
  2005年   3521篇
  2004年   3065篇
  2003年   2487篇
  2002年   1829篇
  2001年   1383篇
  2000年   1193篇
  1999年   919篇
  1998年   642篇
  1997年   534篇
  1996年   455篇
  1995年   372篇
  1994年   281篇
  1993年   214篇
  1992年   181篇
  1991年   106篇
  1990年   92篇
  1989年   76篇
  1988年   55篇
  1987年   37篇
  1986年   20篇
  1985年   29篇
  1984年   36篇
  1983年   28篇
  1982年   17篇
  1981年   11篇
  1980年   16篇
  1979年   11篇
  1961年   5篇
  1958年   5篇
  1957年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
2.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
3.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   
4.
Electric vehicles (EVs) are considered a promising alternative to conventional vehicles (CVs) to alleviate the oil crisis and reduce urban air pollution and carbon emissions. Consumers usually focus on the tangible cost when choosing an EV or CV but overlook the time cost for restricting purchase or driving and the environmental cost from gas emissions, falling to have a comprehensive understanding of the economic competitiveness of CVs and EVs. In this study, a life cycle cost model for vehicles is conducted to express traffic and environmental policies in monetary terms, which are called intangible cost and external cost, respectively. Battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), and CVs are compared in four first-tier, four new first-tier, and 4 s-tier and below cities in China. The comparison shows that BEVs and FCEVs in most cities are incomparable with CVs in terms of tangible cost. However, the prominent traffic and environmental policies in first-tier cities, especially in Beijing and Shanghai, greatly increase the intangible and external costs of CVs, making consumers more inclined to purchase BEVs and FCEVs. The main policy benefits of BEVs and FCEVs come from three aspects: government subsidies, purchase and driving restrictions, and environmental taxes. With the predictable reduction in government subsidies, traffic and environmental policies present important factors influencing the competitiveness of BEVs and FCEVs. In first-tier cities, BEVs and FCEVs already have a competitive foundation for large-scale promotion. In new first-tier and second-tier and below cities, stricter traffic and environmental policies need to be formulated to offset the negative impact of the reduction in government subsidies on the competitiveness of BEVs and FCEVs. Additionally, a sensitivity analysis reveals that increasing the mileage and reducing fuel prices can significantly improve the competitiveness of BEVs and FCEVs, respectively.  相似文献   
5.
The health benefits of human milk oligosaccharides (HMOs) make them attractive targets as supplements for infant formula milks. However, HMO synthesis is still challenging and only two HMOs have been marketed. Engineering glycoside hydrolases into transglycosylases may provide biocatalytic routes to the synthesis of complex oligosaccharides. Lacto-N-biosidase from Bifidobacterium bifidum (LnbB) is a GH20 enzyme present in the gut microbiota of breast-fed infants that hydrolyzes lacto-N-tetraose (LNT), the core structure of the most abundant type I HMOs. Here we report a mutational study in the donor subsites of the substrate binding cleft with the aim of reducing hydrolytic activity and conferring transglycosylation activity for the synthesis of LNT from p-nitrophenyl β-lacto-N-bioside and lactose. As compared with the wt enzyme with negligible transglycosylation activity, mutants with residual hydrolase activity within 0.05% to 1.6% of the wild-type enzyme result in transglycosylating enzymes with LNT yields in the range of 10–30%. Mutations of Trp394, located in subsite -1 next to the catalytic residues, have a large impact on the transglycosylation/hydrolysis ratio, with W394F being the best mutant as a biocatalyst producing LNT at 32% yield. It is the first reported transglycosylating LnbB enzyme variant, amenable to further engineering for practical enzymatic synthesis of LNT.  相似文献   
6.
Engineering simulations have opened several gates for today’s chemical engineers. They are powerful tools to provide technical content as physics-based numerical solvers. Augmented reality (AR) and virtual reality (VR), on the other hand, are already underway to digitize environments in many fields. The combination of AR/VR environments and simulations in engineering education has been attracting widespread interest. Literature has demonstrated a massive amount of digital educational environments in several contexts as being complementary to conventional educational methods. Nevertheless, hosting technical content produced by engineering simulations with educational AR/VR is still challenging and requires expertise from multiple disciplines throughout the technical development. Present work provides a facile and agile methodology for low-cost hardware but content-wise rich AR software development. Inspired by the Covid-19 pandemic, a case study is developed to teach chemical-engineering concepts using a liquid-soap synthesis process. Accordingly, we assess and conclude the digital development process to guide inexperienced developers for the digitalization of teaching content. The present contribution serves as an example of the power of integrating AR/VR with traditional engineering simulations for educational purposes. The digital tool developed in this work is shared in the online version.  相似文献   
7.
Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins’ native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.  相似文献   
8.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   
9.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
10.
This study aimed to evaluate the physicochemical characteristics and sensory attributes of beef burgers with the addition of pea fibre as a partial substitute of meat or fat. Three formulations were prepared: control (CON) – similar to the commercial formulation; fibre/less meat (FLM)—5% meat reduction and addition of 1% pea fibre; fibre/less fat (FLF)—7% fat reduction and addition of 1% pea fibre. Non-significant differences were obtained for pH, colour parameters (L* and b*), texture profile, cooking loss and size reduction among formulations. Moreover, sensory analysis with consumers of beef burgers did not indicate differences among the formulations for all the analysed attributes. Therefore, pea fibre is a promising partial replacer for meat and fat in beef burgers due to the preservation of technological parameters and sensory acceptance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号