首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68842篇
  免费   7394篇
  国内免费   3216篇
电工技术   3505篇
技术理论   1篇
综合类   6766篇
化学工业   10605篇
金属工艺   5680篇
机械仪表   3601篇
建筑科学   7205篇
矿业工程   1226篇
能源动力   8842篇
轻工业   2989篇
水利工程   964篇
石油天然气   2691篇
武器工业   452篇
无线电   2710篇
一般工业技术   8143篇
冶金工业   4120篇
原子能技术   1164篇
自动化技术   8788篇
  2024年   258篇
  2023年   826篇
  2022年   1620篇
  2021年   1860篇
  2020年   2077篇
  2019年   1770篇
  2018年   1603篇
  2017年   1918篇
  2016年   2370篇
  2015年   2335篇
  2014年   4287篇
  2013年   4401篇
  2012年   4978篇
  2011年   5026篇
  2010年   3838篇
  2009年   4120篇
  2008年   3546篇
  2007年   4510篇
  2006年   4072篇
  2005年   3598篇
  2004年   3043篇
  2003年   2736篇
  2002年   2461篇
  2001年   2095篇
  2000年   1787篇
  1999年   1431篇
  1998年   1163篇
  1997年   1024篇
  1996年   825篇
  1995年   694篇
  1994年   592篇
  1993年   488篇
  1992年   411篇
  1991年   293篇
  1990年   250篇
  1989年   260篇
  1988年   172篇
  1987年   118篇
  1986年   83篇
  1985年   67篇
  1984年   81篇
  1983年   70篇
  1982年   72篇
  1981年   28篇
  1980年   21篇
  1979年   16篇
  1975年   10篇
  1963年   9篇
  1959年   34篇
  1951年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
2.
Fire spread and growth on real‐scale four cushion mock‐ups of residential upholstered furniture (RUF) were investigated with the goal of identifying whether changes in five classes of materials (barrier, flexible polyurethane foam, polyester fiber wrap, upholstery fabric, and sewing thread), referred to as factors, resulted in statistically significant changes in burning behavior. A fractional factorial experimental design plus practical considerations yielded a test matrix with 20 material combinations. Experiments were repeated a minimum of two times. Measurements included fire spread rates derived from video recordings and heat release rates (HRRs). A total of 13 experimental parameters (3 based on the videos and 10 on the HRR results), referred to as responses, characterized the measurements. Statistical analyses based on Main Effects Plots (main effects) and Block Plots (main effects and factor interactions) were used. The results showed that three of the factors resulted in statistically significant effects on varying numbers of the 13 responses. The Barrier and Fabric factors had the strongest main effects with roughly comparable magnitudes. Foam was statistically significant for fewer of the responses and its overall strength was weaker than for Barrier and Fabric. No statistically significant main effects were identified for Wrap or Thread. Multiple two‐term interactions between factors were identified as being statistically significant. The Barrier*Fabric interaction resulted in the highest number of and strongest statistically significant effects. The existence of two‐term interactions means that it will be necessary to consider their effects in approaches designed to predict the burning behavior of RUF.  相似文献   
3.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   
4.
《Journal of dairy science》2022,105(12):9623-9638
A simulation study was conducted to examine accuracy of estimating daily O2 consumption, CO2 and CH4 emissions, and heat production (HP) using a spot sampling technique and to determine optimal spot sampling frequency (FQ). Data were obtained from 3 experiments where daily O2 consumption, emissions of CO2 and CH4, and HP were measured using indirect calorimetry (respiration chamber or headbox system). Experiment 1 used 8 beef heifers (ad libitum feeding; gaseous exchanges measured every 30 min over 3 d in respiration chambers); Experiment 2 used 56 lactating Holstein-Friesian cows (restricted feeding; gaseous exchanges measured every 12 min over 3 d in respiration chambers); Experiment 3 used 12 lactating Jersey cows (ad libitum feeding; gaseous exchanges measured every hour for 1 d using headbox style chambers). Within experiment, averages of all measurements (FQALL) and averages of measurements selected at time points with 12, 8, 6, or 4 spot sampling FQ (i.e., sampling every 2, 3, 4, and 6 h in a 24-h cycle, respectively; FQ12, FQ8, FQ6, and FQ4, respectively) were compared. Within study a mixed model was used to compare gaseous exchanges and HP among FQALL, FQ12, FQ8, FQ6, and FQ4, and an interaction of dietary treatment by FQ was examined. A regression model was used to evaluate accuracy of spot sampling within study [i.e., FQALL (observed) vs. FQ12, FQ8, FQ6, or FQ4 (estimated)]. No interaction of diet by FQ was observed for any variables except for CH4 production in experiment 1. No FQ effect was observed for gaseous exchanges and HP except in experiment 2 where CO2 production was less (5,411 vs. 5,563 L/d) for FQ4 compared with FQALL, FQ12, and FQ8. A regression analysis between FQALL and each FQ within study showed that slopes and intercepts became farther from 1 and 0, respectively, for almost all variables as FQ decreased. Most variables for FQ12 and FQ8 had root mean square prediction error (RMSPE) less than 10% of the mean and concordance correlation coefficient (CCC) greater than 0.80, and RMSPE increased and CCC decreased as FQ decreased. When a regression analysis was conducted with combined data from the 3 experiments (mixed model with study as a random effect), results agreed with those from the analysis for the individual studies. Prediction errors increased and CCC decreased as FQ decreased. Generally, all the estimates from FQ12, FQ8, FQ6, and FQ4 had RMSPE less than 10% of the means and CCC greater than 0.90 except for FQ6 and FQ4 for O2 consumption and CH4 production. In conclusion, the spot sampling simulation with 3 indirect calorimetry experiments indicated that FQ of at least 8 samples (every 3 h in a 24-h cycle) was required to estimate daily O2 consumption, CO2 and CH4 production, and HP and to detect changes in those in response to dietary treatments. This sampling FQ may be considered when using techniques that measure spot gas exchanges such as the GreenFeed and face mask systems.  相似文献   
5.
Jet flames originated by cryo-compressed ignited hydrogen releases can cause life-threatening conditions in their surroundings. Validated models are needed to accurately predict thermal hazards from a jet fire. Numerical simulations of cryogenic hydrogen flow in the release pipe are performed to assess the effect of heat transfer through the pipe walls on jet parameters. Notional nozzle exit diameter is calculated based on the simulated real nozzle parameters and used in CFD simulations as a boundary condition to model jet fires. The CFD model was previously validated against experiments with vertical cryogenic hydrogen jet fires with release pressures up to 0.5 MPa (abs), release diameter 1.25 mm and temperatures as low as 50 K. This study validates the CFD model in a wider domain of experimental release conditions - horizontal cryogenic jets at exhaust pipe temperature 80 K, pressure up to 2 MPa ab and release diameters up to 4 mm. Simulation results are compared against such experimentally measured parameters as hydrogen mass flow rate, flame length and radiative heat flux at different locations from the jet fire. The CFD model reproduces experiments with reasonable for engineering applications accuracy. Jet fire hazard distances established using three different criteria - temperature, thermal radiation and thermal dose - are compared and discussed based on CFD simulation results.  相似文献   
6.
Redundancy allocation problem (RAP) is one of the best-developed problems in reliability engineering studies. This problem follows to optimize the reliability of a system containing s sub-systems under different constraints, including cost, weight, and volume restrictions using redundant components for each sub-system. Various solving methodologies have been used to optimize this problem, including exact, heuristic, and meta-heuristic algorithms. In this paper, an efficient multi-objective meta-heuristic algorithm based on simulated annealing (SA) is developed to solve multi-objective RAP (MORAP). This algorithm is knowledge-based archive multi-objective simulated annealing (KBAMOSA). KBAMOSA applies a memory matrix to reinforce the neighborhood structure to achieve better quality solutions. The results analysis and comparisons demonstrate the performance of the proposed algorithm for solving MORAP.  相似文献   
7.
In this paper, a new inverse identification method of constitutive parameters is developed from full kinematic and thermal field measurements. It consists in reconstructing the heat source field from two different approaches by using the heat diffusion equation. The first one requires the temperature field measurement and the value of the thermophysical parameters. The second one is based on the kinematic field measurement and the choice of a thermo-hyperelastic model that contains the parameters to be identified. The identification is carried out at the local scale, ie, at any point of the heat source field, without using the boundary conditions. In the present work, the method is applied to the challenging case of hyperelasticity from a heterogeneous test. Due to large deformations undergone by the rubber specimen tested, a motion compensation technique is developed to plot the kinematic and the thermal fields at the same points before reconstructing the heterogeneous heat source field. In the present case, the constitutive parameter of the Neo-Hookean model has been identified, and its distribution has been characterized with respect to the strain state at the surface of a cross-shaped specimen.  相似文献   
8.
Pinhão seed is an unconventional source of starch and the pines grow up in native forests of southern Latin America. In this study, pinhão starch was adjusted at 15, 20 and 25% moisture content and heated to 100, 110 and 120 °C for 1 h. A decrease in λ max (starch/iodine complex) was observed as a result of increase in temperature and moisture content of HMT. The ratio of crystalline to amorphous phase in pinhão starch was determined via Fourier transform infra red by taking 1045/1022 band ratio. A decrease in crystallinity occurred as a result of HMT. Polarised light microscopy indicated a loss of birefringence of starch granules under 120 °C at 25% moisture content. Granule size distribution was further confirmed via scanning electron microscopy which showed the HMT effects. These results increased the understanding on molecular and structural properties of HMT pinhão starch and broadened its food and nonfood industrial applications.  相似文献   
9.
本研究针对水泥窑余热发电系统的工作条件,根据耐磨材料的损毁机理,采用高铝矾土、煅烧氧化铝粉、黏土、硅微粉等为原料,以磷酸二氢铝为结合剂,以铝酸钙水泥为促硬剂,通过添加掩蔽剂和优化配料工艺,制备了水泥窑余热发电系统用耐磨材料,并对不同处理温度对耐磨材料的性能影响进行了分析。结果表明增强骨料与基质的结合能力有利于耐磨性的提高,磷酸及磷酸盐与氧化铝之间会随着温度的升高生成不同的磷酸铝相,都能够起到结合作用,比采用水泥结合更有利于提高材料在不同温度下的强度和耐磨性。使用结果表明,制备的耐磨材料施工性能优良,凝结硬化时间适当,强度高,抗冲刷性能好,在水泥窑余热发电系统中取得了良好的使用效果。  相似文献   
10.
In this paper, a modified particle swarm optimization (PSO) algorithm is developed for solving multimodal function optimization problems. The difference between the proposed method and the general PSO is to split up the original single population into several subpopulations according to the order of particles. The best particle within each subpopulation is recorded and then applied into the velocity updating formula to replace the original global best particle in the whole population. To update all particles in each subpopulation, the modified velocity formula is utilized. Based on the idea of multiple subpopulations, for the multimodal function optimization the several optima including the global and local solutions may probably be found by these best particles separately. To show the efficiency of the proposed method, two kinds of function optimizations are provided, including a single modal function optimization and a complex multimodal function optimization. Simulation results will demonstrate the convergence behavior of particles by the number of iterations, and the global and local system solutions are solved by these best particles of subpopulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号