首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26141篇
  免费   2347篇
  国内免费   1527篇
电工技术   1008篇
技术理论   2篇
综合类   2022篇
化学工业   3558篇
金属工艺   2662篇
机械仪表   1867篇
建筑科学   2085篇
矿业工程   942篇
能源动力   837篇
轻工业   864篇
水利工程   358篇
石油天然气   918篇
武器工业   277篇
无线电   3904篇
一般工业技术   5882篇
冶金工业   1117篇
原子能技术   153篇
自动化技术   1559篇
  2024年   69篇
  2023年   310篇
  2022年   400篇
  2021年   548篇
  2020年   661篇
  2019年   531篇
  2018年   592篇
  2017年   782篇
  2016年   859篇
  2015年   879篇
  2014年   1423篇
  2013年   1648篇
  2012年   1879篇
  2011年   2074篇
  2010年   1530篇
  2009年   1602篇
  2008年   1526篇
  2007年   1834篇
  2006年   1730篇
  2005年   1427篇
  2004年   1193篇
  2003年   1075篇
  2002年   985篇
  2001年   827篇
  2000年   733篇
  1999年   517篇
  1998年   478篇
  1997年   359篇
  1996年   290篇
  1995年   283篇
  1994年   229篇
  1993年   189篇
  1992年   139篇
  1991年   99篇
  1990年   78篇
  1989年   52篇
  1988年   40篇
  1987年   25篇
  1986年   14篇
  1985年   14篇
  1984年   13篇
  1983年   15篇
  1982年   8篇
  1981年   16篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1976年   6篇
  1974年   5篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
2.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
3.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
4.
5.
Magnetron sputtered low-loading iridium-ruthenium thin films are investigated as catalysts for the Oxygen Evolution Reaction at the anode of the Proton Exchange Membrane Water Electrolyzer. Electrochemical performance of 50 nm thin catalysts (Ir pure, Ir–Ru 1:1, Ir–Ru 1:3, Ru pure) is tested in a Rotating Disk Electrode. Corresponding Tafel slopes are measured before and after the CV-based procedure to compare the activity and stability of prepared compounds. Calculated activities prior to the procedure confirm higher activity of ruthenium-containing catalysts (Ru pure > Ir–Ru 1:3 > Ir–Ru 1:1 > Ir pure). However, after the procedure a higher activity and less degradation of Ir–Ru 1:3 is observed, compared to Ir–Ru 1:1, i.e. the sample with a higher amount of unstable ruthenium performs better. This contradicts the expected behavior of the catalyst. The comprehensive chemical and structural analysis unravels that the stability of Ir–Ru 1:3 sample is connected to RuO2 chemical state and hcp structure. Obtained results are confirmed by measuring current densities in a single cell.  相似文献   
6.
《Ceramics International》2020,46(4):4148-4153
The ferroelectric photovoltaic (FPV) effect obtained in inorganic perovskite ferroelectric materials has received much attention because of its large potential in preparing FPV devices with superior stability, high open-circuit voltage (Voc) and large short-circuit current density (Jsc). In order to obtain suitable thickness for the ferroelectric thin film as light absorption layer, in which, the sunlight can be fully absorbed and the photo-generated electrons and holes are recombined as few as possible, we prepare Pb0.93La0.07(Zr0.6Ti0.4)0.9825O3 (PLZT) ferroelectric thin films with different layer numbers by the sol-gel method and based on these thin films, obtain FPV devices with FTO/PLZT/Au structure. By measuring photovoltaic properties, it is found that the device with 4 layer-PLZT thin film (~300 nm thickness) exhibits the largest Voc and Jsc and the photovoltaic effect obviously depends on the value and direction of the poling electric field. When the device is applied a negative poling electric field, both the Voc and Jsc are significantly higher than those of the device applied the positive poling electric field, due to the depolarization field resulting from the remnant polarization in the same direction with the built-in electric field induced by the Schottky barrier, and the higher the negative poling electric field, the larger the Voc and Jsc. At a -333 kV/cm poling electric field, the FPV device exhibits the most superior photovoltaic properties with a Voc of as high as 0.73 V and Jsc of as large as 2.11 μA/cm2. This work opens a new way for developing ferroelectric photovoltaic devices with good properties.  相似文献   
7.
Anorthite-based highly porous membranes were successfully produced using calcined oyster shell to enhance the pore network. The calcined oyster shells produce CaO responsible for the crystallisation of gehlenite and anorthite at relatively low temperature. While the crystallisation produced nano and meso size of intergranular pores, vitrification of feldspar is responsible for development of the capillary porosities. The increasing sintering temperature from 1200 °C to 1300 °C implies the increase in average pores radius from 1.2 μm to 14.3 μm due to the formation of spherical pores from vitrification. The combination of different class of porosities in the matrices results in the interconnection with improvement of the permeability of the porous network. Porosity, permeability and chemical stability were improved with 20 wt.% of calcined oyster shell addition allowing the possible development of high strength porous network which is promising for the membranes support and other applications including liquid separation as well as liquid filtration where high pressure is used.  相似文献   
8.
To improve the convertibility of reconfigurable manufacturing system (RMS), the concept of delayed reconfigurable manufacturing system (D-RMS) was proposed. RMS and D-RMS are both constructed around part family. However, D-RMS may suffer from ultra-long system problem with unacceptable idle machines using generic RMS part families. Besides, considering the complex basic system structure of D-RMS, machine selection of D-RMS should be addressed, including dedicated machine, flexible machine, and reconfigurable machine. Therefore, a system design method for D-RMS based on part family grouping and machine selection is proposed. Firstly, a part family grouping method is proposed for D-RMS that groups the parts with more former common operations into the same part family. The concept of longest relative position common operation subsequence (LPCS) is proposed. The similarity coefficient among the parts is calculated based on LPCS. The reciprocal value of the operation position of LPCS is adopted as the characteristic value. The average linkage clustering (ALC) algorithm is used to cluster the parts. Secondly, a machine selection method is proposed to complete the system design of D-RMS, including machine selection rules and the dividing point decision model. Finally, a case study is given to implement and verify the proposed system design method for D-RMS. The results show that the proposed system design method is effective, which can group parts with more former common operations into the same part family and select appropriate machine types.  相似文献   
9.
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm−2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号