首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339963篇
  免费   30493篇
  国内免费   19162篇
电工技术   25062篇
技术理论   53篇
综合类   44176篇
化学工业   40217篇
金属工艺   12601篇
机械仪表   19832篇
建筑科学   41860篇
矿业工程   16935篇
能源动力   13574篇
轻工业   16693篇
水利工程   18906篇
石油天然气   16036篇
武器工业   3638篇
无线电   22847篇
一般工业技术   25216篇
冶金工业   18981篇
原子能技术   4306篇
自动化技术   48685篇
  2024年   1007篇
  2023年   3411篇
  2022年   6693篇
  2021年   8151篇
  2020年   8673篇
  2019年   7509篇
  2018年   6900篇
  2017年   8535篇
  2016年   10133篇
  2015年   11176篇
  2014年   19074篇
  2013年   18614篇
  2012年   22750篇
  2011年   24571篇
  2010年   19060篇
  2009年   20010篇
  2008年   18753篇
  2007年   24044篇
  2006年   22771篇
  2005年   19880篇
  2004年   16821篇
  2003年   15196篇
  2002年   12617篇
  2001年   10688篇
  2000年   9025篇
  1999年   7317篇
  1998年   5652篇
  1997年   4935篇
  1996年   4512篇
  1995年   3844篇
  1994年   3346篇
  1993年   2530篇
  1992年   2207篇
  1991年   1619篇
  1990年   1426篇
  1989年   1224篇
  1988年   965篇
  1987年   678篇
  1986年   504篇
  1985年   426篇
  1984年   401篇
  1983年   295篇
  1982年   258篇
  1981年   194篇
  1980年   157篇
  1979年   146篇
  1978年   76篇
  1977年   85篇
  1975年   65篇
  1959年   67篇
排序方式: 共有10000条查询结果,搜索用时 937 毫秒
1.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
2.
Investigation on the miniaturized parallel multichannel-based devices packed with glass beads to improve the mass exchange execution is the critical focal point of the current study. One of the essential parameters to specify the miniaturized devices' flow distribution is the residence time distribution (RTD). In the present context, the RTDs of a liquid tracer were investigated for the air-water multiphase flows (concurrent) across the multichannel-based miniaturized devices (comprising of 11 similar dimensional parallel channels). The devices were variable in height and packed with glass beads. The conductivity estimations generated the RTD curves and were addressed by the axial dispersion model (ADM). The fluid-flow rates differed within the range of 5–23 ml min−1. The axial dispersion coefficients and the rate of the specific energy dispersion were investigated. The effects of pressure difference and geometry on the hydrodynamic attributes and mixing properties were well-illustrated, and the new correlations were suggested.  相似文献   
3.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
4.
It is clear that the entire world have to research, develop, demonstrate and plan for alternative energy systems for shorter term and also longer term. As a clean energy carrier, hydrogen has become increasingly important. It owes its prestige to the increase within the energy costs as a result of the equivocalness in the future availability. Two phase flow and hydrogen gas flow dynamics effect on performance of water electrolysis. Hydrogen bubbles are recognized to influence energy and mass transfer in gas-evolving electrodes. The movement of hydrogen bubbles on the electrodes in alkaline electrolysis is known to affect the reaction efficiency. Within the scope of this research, a physical modeling for the alkaline electrolysis is determined and the studies about the two-phase flow model are carried out for this model. Internal and external forces acting on the resulting bubbles are also determined. In this research, the analytical solution of two-phase flow analysis of hydrogen in the electrolysis is analyzed.  相似文献   
5.
6.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
7.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
8.
Sweet pickled mango named Ma-Muang Bao Chae-Im is a traditional preserved mango from Hat Yai, Thailand. This study investigated (I) volatile and non-volatile compound profiles of commercial Ma-Muang Bao Chae-Im and (II) their relationship to consumer preference. Untargeted metabolomics profiling was performed by gas chromatography-mass quadrupole-time of flight analysis. There were 117 volatile and 44 non-volatile compounds annotated in six commercial brands of Ma-Muang Bao Chae-Im. Furthermore, 46 volatile and 19 non-volatile compounds’ discriminant markers were found by Partial least square discriminant analysis. Among those markers, sorbic and benzoic acid were observed in several brands; moreover, the combination of both compounds altered the volatile profile, especially the ester group. Partial least square regression revealed that overall consumer liking is correlated to 1-heptanol; 1-octanol; acetoin; acetic acid, 2-phenylethyl ester; D-manitol; terpenes and terpenoids, while firmness to sucrose and L-(-)-sorbofuranose. On the other hand, most ester compounds were not related to consumer preference.  相似文献   
9.
This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.   相似文献   
10.
边坡位移的时间序列曲线存在复杂的非线性特性,传统的预测模型精度不足以满足预测要求。为此提出了基于变分模态分解的鸟群优化-核极限学习机的预测模型,并用于河北省某水泥厂的边坡位移预测。该方法首先采用VMD把边坡位移序列分解为一系列的有限带宽的子序列,再对各子序列分别采用相空间重构并用核极限学习机预测,采用鸟群算法优化相空间重构的嵌入维度和KELM中惩罚系数和核参数三个数值,以取得最优预测模型。最后将各个子序列预测值叠加,得到边坡位移的最终预测值。结果表明:和KELM、BSA-KELM、EEMD-BSA-KELM模型相比,基于VMD的BSA-KELM预测精度更高,为边坡位移的预测提供一种有效的方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号