首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11931篇
  免费   365篇
  国内免费   307篇
电工技术   279篇
综合类   668篇
化学工业   1660篇
金属工艺   1162篇
机械仪表   1374篇
建筑科学   885篇
矿业工程   853篇
能源动力   1047篇
轻工业   225篇
水利工程   125篇
石油天然气   376篇
武器工业   126篇
无线电   464篇
一般工业技术   1272篇
冶金工业   675篇
原子能技术   170篇
自动化技术   1242篇
  2024年   8篇
  2023年   137篇
  2022年   409篇
  2021年   398篇
  2020年   313篇
  2019年   234篇
  2018年   268篇
  2017年   311篇
  2016年   362篇
  2015年   443篇
  2014年   654篇
  2013年   658篇
  2012年   634篇
  2011年   977篇
  2010年   633篇
  2009年   712篇
  2008年   654篇
  2007年   763篇
  2006年   689篇
  2005年   630篇
  2004年   499篇
  2003年   386篇
  2002年   345篇
  2001年   225篇
  2000年   178篇
  1999年   182篇
  1998年   167篇
  1997年   122篇
  1996年   110篇
  1995年   94篇
  1994年   62篇
  1993年   65篇
  1992年   53篇
  1991年   47篇
  1990年   32篇
  1989年   33篇
  1988年   27篇
  1987年   10篇
  1986年   7篇
  1985年   8篇
  1984年   12篇
  1983年   3篇
  1982年   8篇
  1981年   12篇
  1980年   4篇
  1979年   7篇
  1977年   3篇
  1975年   2篇
  1973年   3篇
  1965年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Aiming at improving the relatively low energy output and energy conversion efficiency of the micro-thermal voltaic (MTPV) system, an innovative heat recirculating micro combustor with pin fins is designed. The effects of pin fins arrangement, hydrogen/air equivalent ratio on the energy output and performance of CHMC, HMCP and HMCI are compared and investigated. The result shows that when the Vin is 6 m/s and Φ is 1.0, the emitter power of CHMC is 72.76W, and that of HCMP and HCMI micro combustor are 75.99W and 76.35W. and the emitter efficiency of CHMC, HCMP and HCMI is 41.93%, 43.26% and 44.01%. HMCI has better energy output capability compared with CHMC and HMCP. Even though, HMCI brings a higher pressure drop, it is within the acceptable range. When the Vin is 6 m/s, the pressure drop from the pin fins only accounts for 26.4% of the total pressure drop for HMCI. Through the study of equivalent ratio, it is found that HMCI has good adaptability in different equivalent ratio range. This work provides new ideas for the development of MTPV system in the future.  相似文献   
2.
Solid oxide fuel cells (SOFCs) are considered an important technology in terms of high efficiency and clean energy generation. Flat-tubular solid oxide fuel cell (FT-SOFC) which is a combination of tubular and planar cell geometries stands out with its performance values and low costs. In this study, the performance of an FT-SOFC is analyzed numerically by using finite element method-based design as a result of changing parameters by using different fuels which are pure hydrogen and coal gas with various proportions of CO. In addition, cell performance values for different temperatures were analyzed and interpreted. Analyzes have been performed by using COMSOL Multiphysics software. The rates of CO composition used are 10%, 20%, and 40%, respectively. In addition, the air was used as the oxidizer in all cases. The cell voltage and average cell power of the FT-SOFC were examined under the 800 °C operating condition. The maximum power value and current density value were obtained as 710 W/m2 and 1420 A/m2 for the flat-tubular cell, respectively. As a result of the study, it was observed that the maximum cell power densities increased with increasing temperature. Analysis results showed that FT-SOFCs have suitable properties for different fuel usage and different operating temperatures. High-performance values and design features in different operating conditions are expected to make FT-SOFC the focus of many studies in the future.  相似文献   
3.
Injecting hydrogen into the natural gas network to reduce CO2 emissions in the EU residential sector is considered a critical element of the zero CO2 emissions target for 2050. Burning natural gas and hydrogen mixtures has potential risks, the main one being the flame flashback phenomenon that could occur in home appliances using premixed laminar burners. In the present study, two-dimensional transient computations of laminar CH4 + air and CH4 + H2 + air flames are performed with the open-source CFD code OpenFOAM. A finite rate chemistry based solver is used to compute reaction rates and the laminar reacting flow. Starting from a flame stabilized at the rim of a cylindrical tube burner, the inlet bulk velocity of the premixture is gradually reduced to observe flashback. The results of the present work concern the effects of wall temperature and hydrogen addition on the flashback propensity of laminar premixed methane-hydrogen-air flames. Complete sequences of flame dynamics with gradual increases of premixture velocity are investigated. At the flame flashback velocities, strong oscillations at the flame leading edge emerge, causing broken flame symmetry and finally flame flashback. The numerical results reveal that flashback tendency increase with increasing wall temperature and hydrogen addition rate.  相似文献   
4.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
5.
In this paper, a robust model-free controller for a grid-connected photovoltaic (PV) system is designed. The system consists of a PV generator connected to a three-phase grid by a DC/AC converter. The control objectives of the overall system are to extract maximum power from the PV source, to control reactive power exchange and to improve the quality of the current injected into the grid. The model-free control technique is based on the use of an ultra-local model instead of the dynamic model of the overall system. The local model is continuously updated based on a numerical differentiator using only the input–output behavior of the controlled system. The model-free controller consists of a classical feedback controller and a compensator for the effects of internal parameter changes and external disturbances. Simulation results illustrate the efficiency of the controller for grid-connected PV systems.  相似文献   
6.
Periodontitis is a chronic complex inflammatory disease associated with a destructive host immune response to microbial dysbiosis, leading to irreversible loss of tooth-supporting tissues. Regeneration of functional periodontal soft (periodontal ligament and gingiva) and hard tissue components (cementum and alveolar bone) to replace lost tissues is the ultimate goal of periodontal treatment, but clinically predictable treatments are lacking. Similarly, the identification of biomarkers that can be used to accurately diagnose periodontitis activity is lacking. A relatively novel category of molecules found in oral tissue, circular RNAs (circRNAs) are single-stranded endogenous, long, non-coding RNA molecules, with covalently circular-closed structures without a 5’ cap and a 3’ tail via non-classic backsplicing. Emerging research indicates that circRNAs are tissue and disease-specific expressed and have crucial regulatory functions in various diseases. CircRNAs can function as microRNA or RNA binding sites or can regulate mRNA. In this review, we explore the biogenesis and function of circRNAs in the context of the emerging role of circRNAs in periodontitis pathogenesis and the differentiation of periodontal cells. CircMAP3K11, circCDK8, circCDR1as, circ_0062491, and circ_0095812 are associated with pathological periodontitis tissues. Furthermore, circRNAs are expressed in periodontal cells in a cell-specific manner. They can function as microRNA sponges and can form circRNA–miRNA–mRNA networks during osteogenic differentiation for periodontal-tissue (or dental pulp)-derived progenitor cells.  相似文献   
7.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
8.
Micro-combustor is a portable power device that can provide energy efficiently, heat recirculating is considered to be an important factor affecting the combustion process. For enhancing the heat recirculating and improving the combustion stability, we proposed a heat-recirculating micro-combustor embedded with porous media, and the numerical simulation was carried out by CFD software. In this paper, the effect of porous media materials, thickness and inlet conditions (equivalence ratio, inlet velocity) on the temperature distribution and exhaust species in the micro combustor are investigated. The results showed that compared with the micro combustor without embedded porous media (MCNPM), micro-combustor embedded with porous media (MCEPM) can improve the temperature uniformity distribution in the radial direction and strengthen the preheating capacity. However, it is found that the embedding thickness of porous media should be reasonably arranged. Setting the thickness of porous media to 15 mm, the combustor can obtain excellent comprehensive capacity of steady combustion and heat recirculating. Compared the thermal performance of Al2O3, SiC, and ZrO2 porous media materials, indicating that SiC due to its strong thermal conductivity, its combustion stabilization and heat recirculating capacity are obviously better than that of Al2O3 and ZrO2. With the porous media embedded in the micro combustor, the combustion has a tempering limit of more than 10 m/s, and the flame is blown out of the porous media area over 100 m/s. The reasonable equivalence ratio of CH4/air combustion should be controlled within the range of 0.1–0.5, and “super-enthalpy combustion” can be realized.  相似文献   
9.
10.
The combustion characteristics of ammonia/methanol mixtures were investigated numerically in this study. Methanol has a dramatic promotive effect on the laminar burning velocity (LBV) of ammonia. Three mechanisms from literature and another four self-developed mechanisms constructed in this study were evaluated using the measured laminar burning velocities of ammonia/methanol mixtures from Wang et al. (Combust.Flame. 2021). Generally, none of the selected mechanisms can precisely predict the measured laminar burning velocities at all conditions. Aiming to develop a simplified and reliable mechanism for ammonia/methanol mixtures, the constructed mechanism utilized NUI Galway mechanism (Combust.Flame. 2016) as methanol sub-mechanism and the Otomo mechanism (Int. J. Hydrogen. Energy. 2018) as ammonia sub-mechanism was optimized and reduced. The reduced mechanism entitled ‘DNO-NH3’, can accurately reproduce the measured laminar burning velocities of ammonia/methanol mixtures under all conditions. A reaction path analysis of the ammonia/methanol mixtures based on the DNO-NH3 mechanism shows that methanol is not directly involved in ammonia oxidation, instead, the produced methyl radicals from methanol oxidization contribute to the dehydrogenation of ammonia. Besides, NOx emission analysis demonstrates that 60% methanol addition results in the highest NOx emissions. The most important reactions dominating the NOx consumption and production are identified in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号