首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101926篇
  免费   9739篇
  国内免费   4967篇
电工技术   3725篇
技术理论   1篇
综合类   7284篇
化学工业   18418篇
金属工艺   7908篇
机械仪表   6433篇
建筑科学   8290篇
矿业工程   2528篇
能源动力   2226篇
轻工业   9629篇
水利工程   1371篇
石油天然气   1810篇
武器工业   1378篇
无线电   23177篇
一般工业技术   14646篇
冶金工业   3548篇
原子能技术   950篇
自动化技术   3310篇
  2024年   425篇
  2023年   1328篇
  2022年   2452篇
  2021年   3014篇
  2020年   2928篇
  2019年   2433篇
  2018年   2332篇
  2017年   3272篇
  2016年   3239篇
  2015年   3465篇
  2014年   5144篇
  2013年   5361篇
  2012年   6671篇
  2011年   6759篇
  2010年   5348篇
  2009年   5725篇
  2008年   5353篇
  2007年   7429篇
  2006年   6914篇
  2005年   6105篇
  2004年   5131篇
  2003年   4454篇
  2002年   3857篇
  2001年   3308篇
  2000年   2741篇
  1999年   2250篇
  1998年   1702篇
  1997年   1463篇
  1996年   1260篇
  1995年   1062篇
  1994年   1003篇
  1993年   802篇
  1992年   581篇
  1991年   478篇
  1990年   314篇
  1989年   191篇
  1988年   121篇
  1987年   40篇
  1986年   27篇
  1985年   25篇
  1984年   22篇
  1983年   10篇
  1982年   9篇
  1981年   8篇
  1980年   18篇
  1979年   5篇
  1975年   7篇
  1959年   8篇
  1955年   4篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
1.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
2.
The vanadium hydrides have better hydrogen storage capacity in comparison to the other metal hydrides. Although the structure of VH2 hydride has been reported, the structural stability, electronic and optical properties of VH2 hydride are unclear. To solve these problems, we apply the first-principles method to study the structural stability, electronic and optical properties of VH2 hydrides. Similar to the metal dihydrides, four possible VH2 hydrides such as the cubic (Fm-3m), tetragonal (I4/mmm), tetragonal (P42/mnm) and orthorhombic (Pnma) are designed. The result shows that the cubic VH2 hydride is a thermodynamic and dynamical stability. In particular, the tetragonal (I4/mmm) and the orthorhombic (Pnma) VH2 hydrides are firstly predicted. It is found that these VH2 hydrides show metallic behavior. The electronic interaction of V (d-state)-H (s-state) is beneficial to improve the hydrogen storage in VH2 hydride. In addition, the formation of V–H bond can improve the structural stability of VH2 hydride. Based on the analysis of optical properties, it is found that all VH2 hydrides show the ultraviolet response. Compared to the tetragonal and orthorhombic VH2 hydrides, the cubic VH2 hydride has better storage optical properties. Therefore, we believe that the VH2 hydride is a promising hydrogen storage material.  相似文献   
3.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
4.
纳米药物非临床药代动力学的研究策略及关注要点   总被引:1,自引:0,他引:1  
随着纳米技术的迅速发展,纳米药物的研发已成为目前药物创新的发展方向之一。纳米药物具有基于纳米结构的尺度效应,其药代动力学特征与普通药物相比存在明显差异,其药代动力学研究与普通药物相比也有其特殊性。本文着重探讨纳米药物的非临床药代动力学的研究策略及关注要点,包括受试物、体内/外试验、生物样本分析、数据评价分析等,期望为研发者提供参考。  相似文献   
5.
《Ceramics International》2022,48(24):36860-36870
For the advantages of high-temperature resistance, corrosion resistance and ultra-high hardness, SiCf/SiC composite is becoming a preferred material for manufacturing aero-engine parts. However, the anisotropy and heterogeneity bring great challenges to the processing technology. In this study, a nanosecond pulsed laser is applied to process SiCf/SiC composite, where the influence of the scanning speed and laser scanning direction to the SiC fibers on the morphology of ablated grooves is investigated. The surface characteristics after ablation and the involved chemical reaction of SiCf/SiC are explored. The results show that the increased laser scanning speed, accompanied by the decreasing spot overlap rate, leads to the less accumulation of energy on the material surface, so the ablation effect drops. In addition, for the anisotropy of the SiCf/SiC material, the obtained surface characteristics are closely dependent on the laser scanning direction to the SiC fibers, resulting in different groove morphology. The element composition and phase analysis of the machined surface indicate that the main deposited product is SiO2 and the carbon substance. The results can provide preliminary technical support for controlling the machining quality of ceramic matrix composites.  相似文献   
6.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
7.
《Ceramics International》2022,48(20):29892-29899
It is very challenging for 3D printing based on the selective laser melting (SLM) technology to obtain cermet bulk materials with high density and homogeneous microstructures. In this work, the SLM process of the cermet powders was studied by both simulations and experiments using the WC-Co cemented carbides as an example. The results indicated that the evolution of the ceramic and metallic phases in the cermet particle during the heating, melting and solidification processes were all significantly inhomogeneous from atomic scale to mesoscale microstructures. As a consequence, the microstructural defects were caused intrinsically in the printed bulk material. The formation and growth of the bonding necks between the particles were mainly completed at the later stage of laser heating and the early stage of solidification. Both simulations and experiments demonstrated that thin amorphous layers formed at the ceramics/metal interfaces. This work disclosed the mechanisms for the evolution from the atomic scale to microstructure during the SLM printing of cermet powders, and discovered the origin of the defects in the printed cermet bulk materials.  相似文献   
8.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
9.
10.
Femtosecond (fs) lasers have been proved to be reliable tools for high-precision and high-quality micromachining of ceramic materials. Nevertheless, fs laser processing using a single-mode beam with a Gaussian intensity distribution is difficult to obtain large-area flat and uniform processed surfaces. In this study, we utilize a customized diffractive optical element (DOE) to redistribute the laser pulse energy from Gaussian to square-shaped Flat-Top profile to realize centimeter-scale low-damage micromachining on single-crystal 4H–SiC substrates. We systematically investigated the effects of processing parameters on the changes in surface morphology and composition, and an optimal processing strategy was provided. Mechanisms of the formation of surface nanoparticles and the removal of surface micro-burrs were discussed. We also examined the distribution of subsurface defects caused by fs laser processing by removing a thin surface layer with a certain depth through chemical mechanical polishing (CMP). Our results show that laser-induced periodic surface structures (LIPSSs) covered by fine SiO2 nanoparticles form on the fs laser-processed areas. Under optimal parameters, the redeposition of SiO2 nanoparticles can be minimized, and the surface roughness Sa of processed areas reaches 120 ± 8 nm after the removal of a 10 μm thick surface layer. After the laser processing, micro-burrs on original surfaces are effectively removed, and thus the average profile roughness Rz of 2 mm long surface profiles decreases from 920 ± 120 nm to 286 ± 90 nm. No visible micro-pits can be found after removing ~1 μm thick surface layer from the laser-processed substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号