首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55562篇
  免费   4286篇
  国内免费   2173篇
电工技术   1937篇
技术理论   1篇
综合类   2733篇
化学工业   14029篇
金属工艺   1163篇
机械仪表   3108篇
建筑科学   827篇
矿业工程   957篇
能源动力   2241篇
轻工业   11226篇
水利工程   270篇
石油天然气   19807篇
武器工业   82篇
无线电   436篇
一般工业技术   1549篇
冶金工业   935篇
原子能技术   67篇
自动化技术   653篇
  2024年   258篇
  2023年   708篇
  2022年   1337篇
  2021年   1670篇
  2020年   1758篇
  2019年   1782篇
  2018年   1498篇
  2017年   1863篇
  2016年   2042篇
  2015年   1855篇
  2014年   2996篇
  2013年   3446篇
  2012年   3675篇
  2011年   3845篇
  2010年   2753篇
  2009年   2565篇
  2008年   2287篇
  2007年   3007篇
  2006年   3262篇
  2005年   2816篇
  2004年   2564篇
  2003年   2372篇
  2002年   2090篇
  2001年   1725篇
  2000年   1540篇
  1999年   1272篇
  1998年   1067篇
  1997年   891篇
  1996年   713篇
  1995年   550篇
  1994年   442篇
  1993年   279篇
  1992年   256篇
  1991年   211篇
  1990年   141篇
  1989年   106篇
  1988年   55篇
  1987年   50篇
  1986年   26篇
  1985年   67篇
  1984年   61篇
  1983年   43篇
  1982年   32篇
  1981年   8篇
  1980年   15篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
3.
4.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
5.
The incursion of microbial growth on polymeric products can deteriorate their performance and lead to the development of undesirable staining and odors. A growing trend in the industry has aimed to reduce microbial populations on high-touch surfaces via the use of antimicrobials to protect material aesthetics and durability or to prevent the spread of pathogenic microorganisms. In this study, a variety of plastic substrates (30 unique polymer compounds), including poly(acrylonitrile-co-butadiene-co-styrene), poly(butylene terephthalate), poly(etherimide), various thermoplastic elastomers (TPEs), poly(carbonates), and poly(amides), were screened for susceptibility to microbial attack using American Society for Testing and Materials (ASTM) G21 (fungi susceptibility), Japanese Industrial Standard (JIS) Z2801, and modified ASTM E1428-15a (bacterial susceptibility) test standards. TPEs were determined to be most susceptible to microbial attack under the appropriate environmental conditions. Subsequent studies assessed the use of an antimicrobial additive, zinc pyrithione (ZPT), for potential efficacy in a variety of TPE blends for diverse target market applications. ZPT proved to be very effective in protecting TPEs, reducing Staphylococcus aureus and Escherichia coli populations by 99.9% or more in JIS Z2801 testing and inhibiting fungal growth (rating = 0) according to the ASTM G21 standard.  相似文献   
6.
7.
Soybean oil hydrogenation alters the linolenic acid molecule to prevent the oil from becoming rancid, however, health reports have indicated trans-fat caused by hydrogenation, is not generally regarded as safe. Typical soybeans contain approximately 80 g kg−1 to 120 g kg−1 linolenic acid and 240 g kg−1 of oleic acid. In an effort to accommodate the need for high-quality oil, the United Soybean Board introduced an industry standard for a high oleic acid greater than 750 g kg−1 and linolenic acid less than 30 g kg−1 oil. By combing mutations in the soybean plant at four loci, FAD2-1A and FAD2-1B, oleate desaturase genes and FAD3A and FAD3C, linoleate desaturase genes, and seed oil will not require hydrogenation to prevent oxidation and produce high-quality oil. In 2017 and 2018, a study comparing four near-isogenic lines across multiple Tennessee locations was performed to identify agronomic traits associated with mutations in FAD3A and FAD3C loci, while holding FAD2-1A and FAD2-1B constant in the mutant (high oleic) state. Soybean lines were assessed for yield and oil quality based on mutations at FAD2-1 and FAD3 loci. Variations of wild-type and mutant genotypes were compared at FAD3A and FAD3C loci. Analysis using a generalized linear mixed model in SAS 9.4, indicated no yield drag or other negative agronomic traits associated with the high oleic and low linolenic acid genotype. All four mutations of fad2-1A, fad2-1B, fad3A, and fad3C were determined as necessary to produce a soybean with the new industry standard (>750 g kg−1 oleic and <30 g kg−1 linolenic acid) in a maturity group-IV-Late cultivar for Tennessee growers.  相似文献   
8.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   
9.
10.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号