首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140992篇
  免费   13248篇
  国内免费   7574篇
电工技术   7394篇
技术理论   28篇
综合类   13422篇
化学工业   23887篇
金属工艺   4168篇
机械仪表   4267篇
建筑科学   25456篇
矿业工程   5136篇
能源动力   5126篇
轻工业   6462篇
水利工程   7701篇
石油天然气   5314篇
武器工业   768篇
无线电   10664篇
一般工业技术   15767篇
冶金工业   8384篇
原子能技术   1011篇
自动化技术   16859篇
  2024年   512篇
  2023年   2200篇
  2022年   3222篇
  2021年   4078篇
  2020年   4374篇
  2019年   3741篇
  2018年   3390篇
  2017年   4150篇
  2016年   4625篇
  2015年   4702篇
  2014年   10318篇
  2013年   8892篇
  2012年   10339篇
  2011年   11042篇
  2010年   8417篇
  2009年   8820篇
  2008年   8047篇
  2007年   10040篇
  2006年   9073篇
  2005年   7838篇
  2004年   6661篇
  2003年   5848篇
  2002年   4569篇
  2001年   3446篇
  2000年   2891篇
  1999年   2189篇
  1998年   1659篇
  1997年   1239篇
  1996年   1026篇
  1995年   869篇
  1994年   724篇
  1993年   497篇
  1992年   391篇
  1991年   309篇
  1990年   236篇
  1989年   212篇
  1988年   156篇
  1987年   129篇
  1986年   134篇
  1985年   165篇
  1984年   151篇
  1983年   148篇
  1982年   68篇
  1981年   35篇
  1980年   37篇
  1979年   52篇
  1977年   17篇
  1976年   11篇
  1959年   16篇
  1951年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Waste-to-fuel coupled with carbon capture and storage is forecasted to be an effective way to mitigate the greenhouse gas emissions, reduce the waste sent to landfill and, simultaneously, reduce the dependence of fossil fuels. This study evaluated the techno-economic feasibility of sorption enhanced gasification, which involves in-situ CO2 capture, and benchmarked it with the conventional steam gasification of municipal solid waste for H2 production. The impact of a gate fee and tax levied on the fossil CO2 emissions in economic feasibility was assessed. The results showed that the hydrogen production was enhanced in sorption enhanced gasification, that achieved an optimum H2 production efficiency of 48.7% (T = 650 °C and SBR = 1.8). This was 1.0% points higher than that of the conventional steam gasification (T = 900 °C and SBR = 1.2). However, the total efficiency, which accounts for H2 production and net power output, for sorption enhanced gasification was estimated to be 49.3% (T = 650 °C and SBR = 1.8). This was 4.4% points lower than the figure estimated for the conventional gasification (T = 900 °C and SBR = 1.2). The economic performance assessment showed that the sorption enhanced gasification will result in a significantly higher levelised cost of hydrogen (5.0 €/kg) compared to that estimated for conventional steam gasification (2.7 €/kg). The levelised cost of hydrogen can be reduced to 4.5 €/kg on an introduction of the gate fee of 40.0 €/tMSW. The cost of CO2 avoided was estimated to be 114.9 €/tCO2 (no gate fee and tax levied). However, this value can be reduced to 90.1 €/tCO2 with the introduction of an emission allowance price of 39.6 €/tCO2. Despite better environmental performance, the capital cost of sorption enhanced gasification needs to be reduced for this technology to become competitive with mature gasification technologies.  相似文献   
2.
如何在互联网时代打造一个信息化的管理模式,已经成为广大学校图书管理发展过程中亟待处理的问题。文章就互联网时代下的高职图书管理信息化建设进行了详细探讨,以期能够给广大同仁提供一些借鉴参考,共同为图书管理工作的现代化改革和发展贡献力量。  相似文献   
3.
The development of efficient and stable electrocatalysts is of great significance for improving water splitting. Among them, transition metal oxyhydroxides show excellent performance in oxygen evolution reactions (OER), but there are certain difficulties in direct preparation. Recently, Metal–organic frameworks (MOFs) as precatalysts or precursors have shown promising catalytic performance in OER and can be decomposed under alkaline conditions. Therefore, using a mild and controllable way to convert MOFs into oxyhydroxides and retaining the original structural advantages is crucial for improving the catalytic activity. Herein, a rapid electrochemical strategy is used to activate well-mixed MOFs to prepare Co/Ni oxyhydroxide nanosheets for efficient OER catalysts, and the structural transformation in this process was investigated in detail by using scanning electron microscope, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and electrochemical methods. It is discovered that electrochemical activation can promote ligand substitution of well-mixed MOFs to form porous oxyhydroxide nanosheets and tune the electronic structure of the metal (Co and Ni), which can lead to more active site exposure and accelerate charge transfer. In addition, the change of structure also improves hydrophilicity, as well as benefiting from the strong synergistic effect between multiple species, the optimal a-MCoNi–MOF/NF has excellent OER performance and long-term stability. More obviously, the porous CoNiOOH nanosheets are formed in situ during electrochemical activation process through structural transformation and acts as the active centers. This work provides new insights for mild synthesis of MOFs derivatives and also provides ideas for the preparation of highly efficient catalysts.  相似文献   
4.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
5.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
6.
《Ceramics International》2021,47(23):33070-33077
In this work, a number of precursors with 1:1 silicon to carbon atoms ratio and various carbon atom distributions were synthesized and pyrolyzed in order to obtain silicon oxycarbide based materials. The different carbon atom distributions were obtained using both simple monomers with only one silicon atom, as well as large monomers containing either four or sixteen silicon atoms with predefined carbon atom positions. The silicon oxycarbide based materials were investigated using IR, XRD, 29Si MAS NMR and elemental analysis after annealing at various temperatures, as well as TG. The research shows that carbon atom distribution has great impact on the structure of final material and can be used to tailor the material for its projected uses.  相似文献   
7.
With a growing interest in hydrogen as energy carrier, the efficient purification of hydrogen from gaseous mixtures is very important. This paper addresses the separation of hydrogen using Carbon Molecular Sieves Membranes (CMSM), which show an attractive combination of high permeability, selectivity and stability. Supported CMSM containing various amounts of aluminium have been prepared from novolac and aluminium acetyl acetonate (Al(acac)3) as carbon and alumina precursors. The thickness of the CMSM layers depend on the content of Al(acac)3 in the dipping solution, which also has influence in the pore size and pore size distribution of the membranes. The permeation properties of the membranes against the Al content in the membrane follows a volcano shape, where the membrane containing 4 wt (%) of Al(acac)3 has the best properties and was stable during 720 h for hydrogen at 150 °C and 6 bar pressure difference. All the CMSM have permeation properties well above the Robeson Upper limit.  相似文献   
8.
《Ceramics International》2021,47(22):31319-31328
Manufacturing lightweight aggregate (LWA) at high temperature is an effective way to immobilize heavy metals in solid waste. This work investigated the performance and solidification mechanism of LWA prepared from copper contaminated soil. The volume expansion of LWA could reach a maximum of 28%, and its lowest density accounted of 1.5 g/cm3, which met the standard requirements. Optical microscope and micro-CT test illustrated that the addition of Cu leaded to obvious phase separation in LWA. The Cu leaching result of LWA first increased and then dropped with the temperature. The XRD test found that the main formation phase of Cu in LWA were t-CuFe2O4 and amorphous phase that they had different acid resistance ability. XPS revealed that the main cause of the agglomeration of liquid phase in LWA was the chain broken reaction between Cu and Si–O tetrahedron. SEM-EDS results showed that the distribution of Cu and Si had a strong correlation, which meant that Cu mostly formed amorphous phase. This work showed the uniqueness of Cu in the high temperature immobilization and pointed out the best immobilization target phase.  相似文献   
9.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
10.
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m2 g−1), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号