首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550751篇
  免费   45027篇
  国内免费   25216篇
电工技术   33119篇
技术理论   90篇
综合类   60569篇
化学工业   73542篇
金属工艺   26351篇
机械仪表   30807篇
建筑科学   70614篇
矿业工程   29205篇
能源动力   18164篇
轻工业   41790篇
水利工程   23482篇
石油天然气   26385篇
武器工业   6717篇
无线电   38599篇
一般工业技术   41263篇
冶金工业   29232篇
原子能技术   5012篇
自动化技术   66053篇
  2024年   1754篇
  2023年   6024篇
  2022年   11526篇
  2021年   15184篇
  2020年   14987篇
  2019年   11866篇
  2018年   11081篇
  2017年   13761篇
  2016年   16562篇
  2015年   18146篇
  2014年   34601篇
  2013年   30534篇
  2012年   38556篇
  2011年   41304篇
  2010年   31578篇
  2009年   32484篇
  2008年   29936篇
  2007年   37893篇
  2006年   35398篇
  2005年   30825篇
  2004年   26295篇
  2003年   23384篇
  2002年   19281篇
  2001年   16216篇
  2000年   13555篇
  1999年   10799篇
  1998年   8047篇
  1997年   6975篇
  1996年   6042篇
  1995年   5065篇
  1994年   4366篇
  1993年   3216篇
  1992年   2778篇
  1991年   1988篇
  1990年   1717篇
  1989年   1496篇
  1988年   1092篇
  1987年   767篇
  1986年   595篇
  1985年   566篇
  1984年   501篇
  1983年   372篇
  1982年   305篇
  1981年   248篇
  1980年   222篇
  1979年   147篇
  1978年   89篇
  1977年   93篇
  1976年   69篇
  1975年   72篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
1.
High-purity mullite ceramics, promising engineering ceramics for high-temperature applications, were fabricated using transient liquid phase sintering to improve their high-temperature mechanical properties. Small amounts of ultrafine alumina or silica powders were uniformly mixed with the mullite precursor depending on the silica-alumina ratio of the resulting ceramics to allow for the formation of a transient liquid phase during sintering, thus, enhancing densification at the early stage of sintering and mullite formation by the reaction between additional alumina and the residual glassy phase (mullitization) at the final stage of sintering. The addition of alumina powder to the silica-rich mullite precursor resulted in a reaction between the glassy silica and alumina phases during sintering, thereby forming a mullite phase without inhibiting densification. The addition of fine silica powder to the mullite single-phase precursor led to densification with an abnormal grain growth of mullite, whereas some of the added silica remained as a glassy phase after sintering. The resulting mullite ceramics prepared using different powder compositions showed different sintering behaviors, depending on the amount of alumina added. Upon selecting an optimum process and the amount of alumina to be added, the pure mullite ceramics obtained via transient liquid phase sintering exhibited high density (approximately 99%) and excellent high-temperature flexural strength (approximately 320 MPa) at 1500 °C in air. These results clearly demonstrate that pure mullite ceramics fabricated via transient liquid phase sintering with compositions close to those of stoichiometric mullite could be a promising process for the fabrication of high-temperature structural ceramics used in an ambient atmosphere. The transient liquid phase sintering process proposed in this study could be a powerful processing tool that allows for the preparation of superior high-temperature structural ceramics used in the ambient processing atmosphere.  相似文献   
2.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
3.
4.
The current trends in energy were described, the main of which is the use of alternative energy sources, especially hydrogen. The most common methods of hydrogen accumulation were proposed: accumulation of compressed gaseous hydrogen in high-pressure tanks; accumulation of liquid hydrogen in cryogenic tanks; storing hydrogen in a chemically bound state; accumulation of gaseous hydrogen in carriers with a high specific surface area. Based on the combination of advantages and disadvantages, the most promising methods of accumulation were selected: storage of liquid hydrogen and storage of hydrogen in carriers with a high specific surface area. The main requirement for materials for hydrogen storage by these methods was revealed – a high specific surface area. Prospects for the development of waste-free low-emission technologies due to the recycling of secondary raw materials and the development of low-temperature technologies for the synthesis of functional and structural materials were substantiated. The applicability of large-scale ash and slag waste from coal-fired thermal power plants as a raw material for obtaining materials by low-temperature technologies was shown. The traditional ways of using ash and slag waste as a raw material, active additive and filler in the production of cements were described. Modern technologies for the production of innovative materials with a unique set of properties were presented, namely carbon nanotubes, silica aerogel and geopolymer materials. The prospect of using geopolymer matrices as a precursor for the synthesis of a number of materials was described; the most promising type of materials was selected – geopolymer foams, which are mainly used as sorbents for purifying liquids and gases or accumulating target products, as well as heat-insulating materials. The possibility of obtaining products of any shape and size on the basis of geopolymer matrices without high-temperature processing was shown. The special efficiency of the development of the technology of porous granules and powders obtained from a geopolymer precursor using various methods was substantiated. The obtained granules can be used in the following hydrogen storage technologies: direct accumulation of hydrogen in porous granules; creation of insulating layers for liquid hydrogen storage units.  相似文献   
5.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
6.
学习不仅仅是自然科学知识的学习,更是社会科学、民族文化、正确人生观和价值观的形成过程,“课程思政”无疑正是实现该目标的捷径,它是当前高等院校思想政治教育的新模式。如何提升学生解决“复杂工程问题”的能力成为高校开展工程教育和“新工科”的难点和重点,而课程思政正是培养学生解决“复杂工程问题”中所需要的非技术因素的重要途径。“自动控制系统工程设计”是自动化专业高年级学生的一门专业课,当前关于“课程思政”的论述是指导思想居多、实施经验以及案例设计较少,针对该问题以“自动控制系统工程设计”为例,详细给出了“课程思政”教学案例的具体实施过程,对同类课程提供参考。  相似文献   
7.
文章首先对智能化电子信息技术进行了深入的研究,而后分析了该技术在应用过程中出现的问题,最后结合该技术的相关特点给出了相应的问题解决措施,希望能够对智能化电子信息技术的发展提供帮助。  相似文献   
8.
Due to problems such as pores on surface-treated coatings, the corrosion resistance of pure titanium bipolar plates for proton-exchange membrane fuel cells can be further improved by increasing the corrosion resistance of pure titanium by using differential speed-rolling (DSR); however, these materials have not yet reached the standard requirements of bipolar plates (corrosion current density icorr<103 nA·cm?2). In this work, the corrosion resistance of pure titanium was improved by optimizing the DSR process while the strength was maintained. The best corrosion resistance of the DSR pure titanium was achieved when the roller speed ratio was 2, while icorr was 429 nA·cm?2 in a solution of 0.5 M H2SO4 and 2 mg/L HF at room temperature. The formability of the DSR pure titanium for bipolar plates was verified. The optimal holding pressure range was 6.8–7.0 kN.  相似文献   
9.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
10.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号