首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30986篇
  免费   1986篇
  国内免费   1612篇
电工技术   523篇
技术理论   1篇
综合类   1308篇
化学工业   9330篇
金属工艺   7045篇
机械仪表   1222篇
建筑科学   1157篇
矿业工程   394篇
能源动力   781篇
轻工业   3477篇
水利工程   70篇
石油天然气   1328篇
武器工业   230篇
无线电   1071篇
一般工业技术   5174篇
冶金工业   1120篇
原子能技术   187篇
自动化技术   166篇
  2024年   171篇
  2023年   606篇
  2022年   864篇
  2021年   948篇
  2020年   892篇
  2019年   925篇
  2018年   924篇
  2017年   1114篇
  2016年   1026篇
  2015年   1019篇
  2014年   1588篇
  2013年   1738篇
  2012年   2029篇
  2011年   2317篇
  2010年   1770篇
  2009年   1784篇
  2008年   1540篇
  2007年   1835篇
  2006年   1870篇
  2005年   1520篇
  2004年   1336篇
  2003年   1149篇
  2002年   1042篇
  2001年   854篇
  2000年   757篇
  1999年   584篇
  1998年   487篇
  1997年   388篇
  1996年   319篇
  1995年   261篇
  1994年   203篇
  1993年   181篇
  1992年   162篇
  1991年   96篇
  1990年   68篇
  1989年   64篇
  1988年   28篇
  1987年   15篇
  1986年   26篇
  1985年   21篇
  1984年   13篇
  1983年   14篇
  1982年   12篇
  1981年   3篇
  1980年   12篇
  1977年   1篇
  1976年   2篇
  1959年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Mass transfer in polycrystalline Yb2SiO5 wafers with precise composition control was evaluated and analyzed by oxygen permeation experiments at high temperatures using an oxygen tracer. Oxygen permeation proceeded due to mutual grain boundary diffusion of oxide ions and Yb ions without synergistic effects such as acceleration or suppression. The oxygen shielding properties of Yb2SiO5 were compared with those of the other line compounds such as Yb2Si2O7 and Al2O3 based on the determined mass transfer parameters. It was found that the more preferentially an oxide ion diffuses in the grain boundary compared to the interior of the grain, the greater the effect of suppressing the movement of the oxide ion by applying an oxygen potential gradient becomes.  相似文献   
2.
A silica-based glass-ceramic, with Y2Ti2O7 as the major crystalline phase, is designed, characterised and tested as an oxidation-protective coating for a titanium suboxide (TiOx) thermoelectric material at temperatures of up to 600 °C. The optimised sinter-crystallisation treatment temperatures are found to be 1300 °C and 855 °C for a duration of 30 min, and this treatment leads to a glass-ceramic with cubic Y2Ti2O7 and CaAl2Si2O8 as crystalline phases. An increase of ~270 °C in the dilatometric softening temperature is observed after devitrification of the parent glass, thus further extending its working temperature range.Excellent adhesion of the glass-ceramic coating to the thermoelectric material is maintained after exposure to a temperature of 600 °C for 120 h under oxidising conditions, thus confirming the effectiveness of the T1 glass-ceramic in protecting the TiOx material.  相似文献   
3.
4.
In an attempt to optimize the properties of FeCoNi coating for planar solid oxide fuel cell (SOFC) interconnect application, the coating composition is modified by increasing the ratio of Fe/Ni. An Fe1·5CoNi0.5 (Fe:Co:Ni = 1.5:1:0.5, atomic ratio) metallic coating is fabricated on SUS 430 stainless steel by magnetron sputtering, followed by oxidation in air at 800°C. The Fe1·5CoNi0.5 coating is thermally converted to (Fe,Co,Ni)3O4 and (Fe,Co,Mn,Ni)3O4 without (Ni,Co)O particles. After oxidation for 1680 h, no further migration of Cr is detected in the thermally converted coating region. A low oxidation rate of 5.9 × 10?14 g2 cm?4 s?1 and area specific resistance of 12.64 mΩ·cm2 is obtained for Fe1·5CoNi0.5 coated steels.  相似文献   
5.
In this present work, the effect of lanthanum oxides (La2O3) on the thermal cycle behavior of TBC coatings and mechanical properties such as adhesion strength and microhardness of 8% Yttria Stabilized Zirconia (8YSZ) TBCs were investigated. CoNiCrAlY and aluminium alloy (Al–13%Si) were used as bond coat and substrate materials. 8YSZ and different wt % of La2O3 (10, 20, and 30%) top coatings were applied using the atmospheric plasma spray (APS) method. The thermal cycling test for TBC coated samples were conducted at 800 °C in the electric furnace. The XRD pattern shows that the La2O3 doped 8YSZ material transformed to cubic pyrochloric structured La2Zr2O7 during thermal cycling. Further, the Taguchi-based grey relation analysis (GRA) method was applied to optimize the TBC coating parameters to achieve better mechanical properties such as adhesion strength and microhardness. And the optimized La2O3/8YSZ TBC coating was coated on CRDI engine combustion chamber components. The engine was tested with microalgae biodiesel and hydrogen, and the results were promising for the TBC-coated engine. The engine performance increased while using La2O3/8YSZ coated components, and the emissions from engine exhaust gas such as CO, HC, and smoke reduced considerably. It was found that there was no separation crack and spallation of the coating layer in the microstructure. Ultimately, the microstructural analysis of the optimized TBC coated piston sample after 50 h of running in the diesel engine confirmed that the developed coating had a superior thermal insulation effect and longer life.  相似文献   
6.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
7.
A new TiO2-containing bioactive glass and glass-ceramics based on 50SiO2-(45-X)CaO-(XTiO2)-5P2O5 system was designed using a sol–gel technique (where X = 5, 7.5 and 10 wt %). The roles of the crystallization behavior and physicochemical characteristics of the designed glass and glass-ceramics which were played in the introduction of TiO2 substitutions were investigated. Moreover, cell proliferation and differentiation were evaluated against human osteosarcoma cells (Saos-2). The TiO2/CaO replacements led to the formation of a stronger glass structure and thus increased thermal parameters and the chemical stabilization of the designed materials. The FTIR data confirmed the existence of Ti within the glass and glass-ceramics samples, and no remarkable effect on their chemical integrity was observed. The XRD patterns indicated that calcium-containing minerals, including Ca2SiO4,Ca3(PO4)2, Ca(Ti,Si)O5, CaTiSiO5, and Ca15(PO4)2·(SiO4)6 phases were developed as a role of structure/texture under the applied heat-treatment. The results of the cytotoxicity test proved that a safe sample dose is 12–50 μg/ml, at which cell viability is ≥ 85%. The cell differentiation determined by ALP test proved the superiority of glass-ceramics compared with their native glasses. Therefore, the obtained materials could be safely used as novel biocompatible materials for the regeneration of bone tissue.  相似文献   
8.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
9.
Hot-dip galvanizing is a standard technology to produce coated steel strips. The primary objective of the galvanizing process is to establish a homogeneous zinc layer with a defined thickness. One condition to achieve this objective is a uniform transverse distance between the strip and the gas wiping dies, which blow off excessive liquid zinc. Therefore, a flat strip profile at the gas wiping dies is required. However, strips processed in such plants often exhibit residual curvatures which entail unknown flatness defects of the strip. Such flatness defects cause non-uniform air gaps and hence an inhomogeneous zinc coating thickness. Modern hot-dip galvanizing lines often use electromagnets to control the transverse strip profile near the gas wiping dies. Typically, the control algorithms ensure a flat strip profile at the electromagnets because the sensors for the transverse strip displacement are also located at this position and it is unfeasible to mount displacement sensors directly at the gas wiping dies. This brings along that in general a flatness defect remains at the gas wiping dies, which in turn entails a suboptimal coating.In this paper, a model-based method for a feedforward control of the strip profile at the position of the gas wiping dies is developed. This method is based on a plate model of the axially moving strip that takes into account the flatness defects in the strip. First, an estimator of the flatness defects is developed and validated for various test strips and settings of the plant. Using the validated mathematical model, a simulation study is performed to compare the state-of-the-art control approach (flat strip profile at the electromagnets) with the optimization-based feedforward controller (flat strip profile at the gas wiping dies) proposed in this paper. Moreover, the influence of the distance between the gas wiping dies and the electromagnets is investigated in detail.  相似文献   
10.
Amphotericin B (AMB) was often used in intra-articular injection administration for fungal arthritis, because it could often bring a satisfactory therapeutic efficacy and a minimum systemic toxic side effect. However, because of the multiple operations and the frequent injections, the compliance of the patients was bad. Therefore, to develop a long-term sustained-released preparation of AMB for mycotic arthritis intra-articular administration is of great significance. The purpose of present study was to develop a long-term sustained-released in situ gel of a water-insoluble drug AMB for mycotic arthritis intra-articular administration. Based on the evaluations of the in vitro properties of the formulations, the formulation containing 10% (w/w) ethanol, 15% (w/w) PG, 0.75% (w/w) HA, 5% (w/w) purified soybean oil, 0.03% (w/w) α-tocopherol, 15% (w/w) water and 55% (w/w) glyceryl monooleate was selected as a suitable intra-articular injectable in situ gel drug delivery system for water-insoluble drug AMB. Furthermore, the results of the in vivo study on rabbits showed that the selected formulation was a safe and effective long-term sustained-released intra-articular injectable AMB preparation. Therefore, the presented in situ AMB gel could reduce the frequency of the administration in the AMB treatment of fungal arthritis, and then would get a good patient compliance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号