首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61465篇
  免费   6502篇
  国内免费   3813篇
电工技术   5821篇
技术理论   3篇
综合类   5422篇
化学工业   4592篇
金属工艺   2789篇
机械仪表   4319篇
建筑科学   12372篇
矿业工程   2392篇
能源动力   2981篇
轻工业   2947篇
水利工程   3395篇
石油天然气   4003篇
武器工业   1362篇
无线电   4682篇
一般工业技术   5414篇
冶金工业   2148篇
原子能技术   651篇
自动化技术   6487篇
  2024年   189篇
  2023年   866篇
  2022年   1731篇
  2021年   2056篇
  2020年   2315篇
  2019年   1867篇
  2018年   1690篇
  2017年   2212篇
  2016年   2378篇
  2015年   2526篇
  2014年   3994篇
  2013年   3662篇
  2012年   4769篇
  2011年   4932篇
  2010年   3712篇
  2009年   3698篇
  2008年   3317篇
  2007年   3989篇
  2006年   3588篇
  2005年   3122篇
  2004年   2582篇
  2003年   2145篇
  2002年   1836篇
  2001年   1568篇
  2000年   1280篇
  1999年   1031篇
  1998年   849篇
  1997年   658篇
  1996年   639篇
  1995年   524篇
  1994年   401篇
  1993年   287篇
  1992年   249篇
  1991年   149篇
  1990年   153篇
  1989年   117篇
  1988年   71篇
  1987年   47篇
  1986年   45篇
  1985年   24篇
  1984年   25篇
  1980年   64篇
  1979年   47篇
  1965年   26篇
  1964年   34篇
  1960年   23篇
  1959年   32篇
  1956年   29篇
  1955年   32篇
  1954年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Electrocatalytic water splitting is an important method to produce green and renewable hydrogen (H2). One of the hindrances for wide applications of electrocatalysis in H2 production is the lack of freshwater resources. Comparatively, seawater splitting has become an effective approach for large-scale H2 production due to its abundant reserves. However, the increased complexity of seawater content emerged more problems in electrocatalytic seawater splitting. Recently, various strategies have been reported on improving the performance of electrocatalysts applied in seawater. Herein, this review firstly analyzed the mechanisms and challenges of electrocatalytic seawater splitting to evolve H2, and summarized the recent progress on H2 production in electrocatalytic seawater splitting. Furthermore, suggestions for future work have been provided for guidance.  相似文献   
2.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
3.
诱导式卫星欺骗干扰可诱导航空器逐渐偏离预定航迹,难以被发现,因此及时有效地检测干扰是飞行安全的保障。在现有紧组合导航体制基础上,设计了一种基于误差估值累加开环校正的紧组合导航结构,并证明了其性能与传统闭环校正紧组合导航性能等效。在此结构中,将紧组合导航系统与自适应序贯概率比检测方法结合,提出了一种基于误差估值累加开环校正的诱导式欺骗检测方法,融合紧组合导航信息与其他不受欺骗影响的导航信息,构建欺骗检测统计量进行诱导式欺骗检测。仿真结果表明,开环校正结构可避免随时间累加的惯性导航系统误差所导致的组合导航滤波器发散问题,同时欺骗检测方法可进一步提高算法对“最坏”情形下微小诱导式欺骗的检测效果。  相似文献   
4.
In this work, copper sulfide particles are synthesized with different Co doping concentrations such as 0, 1 and 5% at 80 °C by optimizing synthesis times from 1 to 3 h. Copper sulfide particles possess two structural phases of covellite CuS and digenite Cu9S5. The increase in synthesis time from 1 to 3 h increases the Cu9S5 phase growth and changes the morphology from flower to microsphere. The CuS synthesized with 0, 1 and 5% Co dopant concentrations demonstrate flower consisting of agglomerated nanosheets, microsphere and flower like microsphere. The elemental investigation substantiates Co ions presence in CuS microspheres. The A1g (LO) mode intensity is decreased with increase in Co dopant concentration confirming Co incorporation into CuS microsphere. The CuS synthesized with 0, 1, 5% Co dopants exhibit 322 mV, 305 mV and 289 mV to attain 100 mA/cm2 in 1 M KOH seawater. The CuS synthesized with 5% Co dopant demonstrates higher double layer capacitance (Cdl) of 173.9 mFcm?2 and lower charge transfer resistance (Rct) of 6.07 Ω with 78.84% retention after 10 h continuous stability than that of the other pristine (118.3 mFcm?2, 13.72 Ω) and 1% Co doped CuS microsphere (165.7 mFcm?2, 8.55 Ω) indicating more surface active site and rapid charge carrier transport, respectively.  相似文献   
5.
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently, which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure (EWP). By means of a three-dimensional (3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system (TDS) widely used in China and its optimized drainage system (ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice, including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 kPa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.  相似文献   
6.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
7.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
8.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1 750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中。通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可靠,达到试验预期目的。  相似文献   
9.
Seawater is the most abundant resource on earth, so developing cost-effective, highly durable corrosion resistance and efficient electrocatalysts are crucial to enhance seawater splitting. Herein, we prepared 3D bristlegrass-like Co-doped Ni2P (Co-Ni2P) composites supported on Ni foam (NF) through a facile solvothermal method combined and a subsequent phosphatization treatment. Benefiting from the unique structure, Co-Ni2P shows excellent electrocatalytic activity as an electrode material for both the hydrogen evolution reaction (HER, low overpotential of 116 mV at 50 mA cm?2) and oxygen evolution reaction (OER, low overpotential of 266 mV at 50 mA cm?2). Moreover, the as-prepared Co-Ni2P composites exhibit excellent stability and corrosion resistance in an alkaline medium. Density functional theory (DFT) calculations were employed to evaluate the H1 adsorption of Co-Ni2P, and the results proved the high catalytic activity for the HER. This study provides new materials with a unique morphology for overall water splitting.  相似文献   
10.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号