首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73725篇
  免费   7744篇
  国内免费   2480篇
电工技术   4700篇
综合类   5260篇
化学工业   11502篇
金属工艺   6284篇
机械仪表   5180篇
建筑科学   7515篇
矿业工程   1721篇
能源动力   12866篇
轻工业   2738篇
水利工程   1088篇
石油天然气   4075篇
武器工业   390篇
无线电   5390篇
一般工业技术   8827篇
冶金工业   3663篇
原子能技术   1265篇
自动化技术   1485篇
  2024年   231篇
  2023年   1103篇
  2022年   1840篇
  2021年   2264篇
  2020年   2372篇
  2019年   1925篇
  2018年   1752篇
  2017年   2263篇
  2016年   2764篇
  2015年   2765篇
  2014年   4691篇
  2013年   4519篇
  2012年   5383篇
  2011年   6078篇
  2010年   4213篇
  2009年   4265篇
  2008年   3374篇
  2007年   4559篇
  2006年   4184篇
  2005年   3552篇
  2004年   3105篇
  2003年   2780篇
  2002年   2547篇
  2001年   2037篇
  2000年   1765篇
  1999年   1358篇
  1998年   1171篇
  1997年   979篇
  1996年   837篇
  1995年   676篇
  1994年   550篇
  1993年   420篇
  1992年   336篇
  1991年   220篇
  1990年   186篇
  1989年   184篇
  1988年   120篇
  1987年   96篇
  1986年   76篇
  1985年   55篇
  1984年   87篇
  1983年   63篇
  1982年   70篇
  1981年   22篇
  1980年   16篇
  1979年   13篇
  1978年   11篇
  1977年   11篇
  1959年   29篇
  1951年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
2.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
3.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
4.
Hook and claw pumps are used for recirculation of excess hydrogen in fuel cells. Optimization of the pump design is essential. Computational Fluid Dynamic (CFD) is an effective method for performance optimization. However, it is difficult to conduct CFD simulation because of the sharp cusp of the rotor profile. Cut cell Cartesian mesh could be the solution to handle this complex and moving geometries. The aim of this paper is to evaluate ANSYS Forte for hook and claw pumps. Firstly, the conservation accuracy of the cut cell cartesian mesh is verified using an adiabatic piston cylinder case. Then, simulation results of hook and claw type pump are compared with experimental data. Finally, simulation results of air and hydrogen are compared. The results show that the CFD simulation of hook and claw pumps using cut cell cartesian mesh could provide an efficient and effective approach for the optimization of the system.  相似文献   
5.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
6.
Fire spread and growth on real‐scale four cushion mock‐ups of residential upholstered furniture (RUF) were investigated with the goal of identifying whether changes in five classes of materials (barrier, flexible polyurethane foam, polyester fiber wrap, upholstery fabric, and sewing thread), referred to as factors, resulted in statistically significant changes in burning behavior. A fractional factorial experimental design plus practical considerations yielded a test matrix with 20 material combinations. Experiments were repeated a minimum of two times. Measurements included fire spread rates derived from video recordings and heat release rates (HRRs). A total of 13 experimental parameters (3 based on the videos and 10 on the HRR results), referred to as responses, characterized the measurements. Statistical analyses based on Main Effects Plots (main effects) and Block Plots (main effects and factor interactions) were used. The results showed that three of the factors resulted in statistically significant effects on varying numbers of the 13 responses. The Barrier and Fabric factors had the strongest main effects with roughly comparable magnitudes. Foam was statistically significant for fewer of the responses and its overall strength was weaker than for Barrier and Fabric. No statistically significant main effects were identified for Wrap or Thread. Multiple two‐term interactions between factors were identified as being statistically significant. The Barrier*Fabric interaction resulted in the highest number of and strongest statistically significant effects. The existence of two‐term interactions means that it will be necessary to consider their effects in approaches designed to predict the burning behavior of RUF.  相似文献   
7.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   
8.
《Journal of dairy science》2022,105(12):9623-9638
A simulation study was conducted to examine accuracy of estimating daily O2 consumption, CO2 and CH4 emissions, and heat production (HP) using a spot sampling technique and to determine optimal spot sampling frequency (FQ). Data were obtained from 3 experiments where daily O2 consumption, emissions of CO2 and CH4, and HP were measured using indirect calorimetry (respiration chamber or headbox system). Experiment 1 used 8 beef heifers (ad libitum feeding; gaseous exchanges measured every 30 min over 3 d in respiration chambers); Experiment 2 used 56 lactating Holstein-Friesian cows (restricted feeding; gaseous exchanges measured every 12 min over 3 d in respiration chambers); Experiment 3 used 12 lactating Jersey cows (ad libitum feeding; gaseous exchanges measured every hour for 1 d using headbox style chambers). Within experiment, averages of all measurements (FQALL) and averages of measurements selected at time points with 12, 8, 6, or 4 spot sampling FQ (i.e., sampling every 2, 3, 4, and 6 h in a 24-h cycle, respectively; FQ12, FQ8, FQ6, and FQ4, respectively) were compared. Within study a mixed model was used to compare gaseous exchanges and HP among FQALL, FQ12, FQ8, FQ6, and FQ4, and an interaction of dietary treatment by FQ was examined. A regression model was used to evaluate accuracy of spot sampling within study [i.e., FQALL (observed) vs. FQ12, FQ8, FQ6, or FQ4 (estimated)]. No interaction of diet by FQ was observed for any variables except for CH4 production in experiment 1. No FQ effect was observed for gaseous exchanges and HP except in experiment 2 where CO2 production was less (5,411 vs. 5,563 L/d) for FQ4 compared with FQALL, FQ12, and FQ8. A regression analysis between FQALL and each FQ within study showed that slopes and intercepts became farther from 1 and 0, respectively, for almost all variables as FQ decreased. Most variables for FQ12 and FQ8 had root mean square prediction error (RMSPE) less than 10% of the mean and concordance correlation coefficient (CCC) greater than 0.80, and RMSPE increased and CCC decreased as FQ decreased. When a regression analysis was conducted with combined data from the 3 experiments (mixed model with study as a random effect), results agreed with those from the analysis for the individual studies. Prediction errors increased and CCC decreased as FQ decreased. Generally, all the estimates from FQ12, FQ8, FQ6, and FQ4 had RMSPE less than 10% of the means and CCC greater than 0.90 except for FQ6 and FQ4 for O2 consumption and CH4 production. In conclusion, the spot sampling simulation with 3 indirect calorimetry experiments indicated that FQ of at least 8 samples (every 3 h in a 24-h cycle) was required to estimate daily O2 consumption, CO2 and CH4 production, and HP and to detect changes in those in response to dietary treatments. This sampling FQ may be considered when using techniques that measure spot gas exchanges such as the GreenFeed and face mask systems.  相似文献   
9.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
10.
Jet flames originated by cryo-compressed ignited hydrogen releases can cause life-threatening conditions in their surroundings. Validated models are needed to accurately predict thermal hazards from a jet fire. Numerical simulations of cryogenic hydrogen flow in the release pipe are performed to assess the effect of heat transfer through the pipe walls on jet parameters. Notional nozzle exit diameter is calculated based on the simulated real nozzle parameters and used in CFD simulations as a boundary condition to model jet fires. The CFD model was previously validated against experiments with vertical cryogenic hydrogen jet fires with release pressures up to 0.5 MPa (abs), release diameter 1.25 mm and temperatures as low as 50 K. This study validates the CFD model in a wider domain of experimental release conditions - horizontal cryogenic jets at exhaust pipe temperature 80 K, pressure up to 2 MPa ab and release diameters up to 4 mm. Simulation results are compared against such experimentally measured parameters as hydrogen mass flow rate, flame length and radiative heat flux at different locations from the jet fire. The CFD model reproduces experiments with reasonable for engineering applications accuracy. Jet fire hazard distances established using three different criteria - temperature, thermal radiation and thermal dose - are compared and discussed based on CFD simulation results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号