首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24445篇
  免费   2029篇
  国内免费   728篇
电工技术   497篇
综合类   1367篇
化学工业   10052篇
金属工艺   1366篇
机械仪表   629篇
建筑科学   588篇
矿业工程   567篇
能源动力   387篇
轻工业   5846篇
水利工程   176篇
石油天然气   975篇
武器工业   72篇
无线电   560篇
一般工业技术   2664篇
冶金工业   852篇
原子能技术   144篇
自动化技术   460篇
  2024年   122篇
  2023年   411篇
  2022年   790篇
  2021年   923篇
  2020年   733篇
  2019年   620篇
  2018年   652篇
  2017年   724篇
  2016年   734篇
  2015年   781篇
  2014年   1107篇
  2013年   1350篇
  2012年   1707篇
  2011年   1856篇
  2010年   1350篇
  2009年   1411篇
  2008年   1143篇
  2007年   1729篇
  2006年   1575篇
  2005年   1346篇
  2004年   1117篇
  2003年   925篇
  2002年   758篇
  2001年   667篇
  2000年   528篇
  1999年   453篇
  1998年   348篇
  1997年   299篇
  1996年   209篇
  1995年   154篇
  1994年   132篇
  1993年   104篇
  1992年   109篇
  1991年   75篇
  1990年   48篇
  1989年   35篇
  1988年   29篇
  1987年   18篇
  1986年   19篇
  1985年   13篇
  1984年   12篇
  1983年   15篇
  1982年   8篇
  1981年   7篇
  1980年   9篇
  1979年   3篇
  1975年   4篇
  1974年   7篇
  1973年   6篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
2.
3.
4.
This work evaluated the synergistic effects of combined high-intensity ultrasound (HIU) with β-cyclodextrin (β-CD) treatments on inhibiting browning of apple juice and explored the mechanism through simulation system. The combined treatment of 300 W HIU with 0.006 g mL−1 β-CD had a synergistic impact on maintaining juice colour, resulting in a 39.06% reduction in browning degree, only a 36.64% decrease in total phenolic content, and a 17.82% reduction in PPO activity. The inhibition of enzymatic browning in simulated system revealed that HIU suppressed the enzyme (Polyphenol oxidase, PPO) and β-CD inhibited enzyme (PPO) and embedded substrate (polyphenol). The results of spectroscopic analysis showed that the particle-size distribution of PPO narrowed, the content of α-helix in the secondary structure increased, the fluorescence intensity increased, and the maximum wavelength was red-shifted after HIU and β-CD treatment. Changes in structure could further result in PPO activity loss. Hence, the combined treatment could synthetically alleviate the browning of apple juice.  相似文献   
5.
《Ceramics International》2022,48(4):4401-4423
Nano-zirconia has been widely applied due to its excellent physical and chemical properties (e.g., high strength, corrosion resistance, oxygen ion conductivity). Existing preparation methods of nano-zirconia tend to require long reaction time, and the sizes of final particles are large with uneven distributions. Sub-/supercritical hydrothermal synthesis of nanoparticles is favored by researchers owing to controllable reaction process, uniform particle size distribution, good reproducibility, short reaction time, high conversion rate and harmlessness to environment. In this paper, the characteristics and mechanisms of dissolution, crystallization and growth of nano-zirconia during sub-/supercritical hydrothermal synthesis are systematically reviewed. The influences of process and material parameters on the size and purity of particles are analyzed. Then, the reaction mechanism and product phase transition mechanism during hydrothermal synthesis of zirconia are summarized to provide a theoretical reference for the oriented preparation. Finally, the improvement and commercialization of sub-/supercritical hydrothermal synthesis technology are evaluated, and the future research topics are proposed.  相似文献   
6.
The phosphorylation of serine 10 in histone 3 (p-S10H3) has recently been demonstrated to participate in spinal nociceptive processing. However, superficial dorsal horn (SDH) neurons involved in p-S10H3-mediated nociception have not been fully characterized. In the present work, we combined immunohistochemistry, in situ hybridization with the retrograde labeling of projection neurons to reveal the subset of dorsal horn neurons presenting an elevated level of p-S10H3 in response to noxious heat (60 °C), causing burn injury. Projection neurons only represented a small percentage (5%) of p-S10H3-positive cells, while the greater part of them belonged to excitatory SDH interneurons. The combined immunolabeling of p-S10H3 with markers of already established interneuronal classes of the SDH revealed that the largest subset of neurons with burn injury-induced p-S10H3 expression was dynorphin immunopositive in mice. Furthermore, the majority of p-S10H3-expressing dynorphinergic neurons proved to be excitatory, as they lacked Pax-2 and showed Lmx1b-immunopositivity. Thus, we showed that neurochemically heterogeneous SDH neurons exhibit the upregulation of p-S10H3 shortly after noxious heat-induced burn injury and consequential tissue damage, and that a dedicated subset of excitatory dynorphinergic neurons is likely a key player in the development of central sensitization via the p-S10H3 mediated pathway.  相似文献   
7.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
8.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
9.
10.
By leveraging the secret data coding using the remainder storage based exploiting modification direction (RSBEMD), and the pixel change operation recording based on multi-segment left and right histogram shifting, a novel reversible data hiding (RHD) scheme is proposed in this paper. The secret data are first encoded by some specific pixel change operations to the pixels in groups. After that, multi-segment left and right histogram shifting based on threshold manipulation is implemented for recording the pixel change operations. Furthermore, a multiple embedding policy based on chess board prediction (CBP) and threshold manipulation is put forward, and the threshold can be adjusted to achieve adaptive data hiding. Experimental results and analysis show that it is reversible and can achieve good performance in capacity and imperceptibility compared with the existing methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号