首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47648篇
  免费   6195篇
  国内免费   2665篇
电工技术   2794篇
技术理论   5篇
综合类   3428篇
化学工业   14639篇
金属工艺   2958篇
机械仪表   1787篇
建筑科学   2633篇
矿业工程   565篇
能源动力   7355篇
轻工业   1893篇
水利工程   702篇
石油天然气   2459篇
武器工业   298篇
无线电   3017篇
一般工业技术   6042篇
冶金工业   1946篇
原子能技术   1211篇
自动化技术   2776篇
  2024年   199篇
  2023年   1213篇
  2022年   1730篇
  2021年   1882篇
  2020年   1852篇
  2019年   1705篇
  2018年   1466篇
  2017年   1588篇
  2016年   1671篇
  2015年   1704篇
  2014年   2612篇
  2013年   3190篇
  2012年   3062篇
  2011年   3408篇
  2010年   2574篇
  2009年   2609篇
  2008年   2393篇
  2007年   2835篇
  2006年   2671篇
  2005年   2469篇
  2004年   2058篇
  2003年   1882篇
  2002年   1607篇
  2001年   1314篇
  2000年   1095篇
  1999年   853篇
  1998年   797篇
  1997年   660篇
  1996年   573篇
  1995年   508篇
  1994年   392篇
  1993年   334篇
  1992年   303篇
  1991年   218篇
  1990年   230篇
  1989年   179篇
  1988年   133篇
  1987年   92篇
  1986年   74篇
  1985年   68篇
  1984年   93篇
  1983年   52篇
  1982年   35篇
  1981年   15篇
  1980年   11篇
  1979年   9篇
  1974年   5篇
  1966年   7篇
  1959年   16篇
  1951年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
2.
3.
The activity of catalysts with various sizes was compared in a fixed-bed Fischer–Tropsch reactor under similar operating conditions by determining the deactivation model. Catalyst size had no impact on the type of deactivation model. The smaller catalyst showed a smaller deactivation constant of catalyst (kd) and a lower deactivation rate in the initial stage. The decline in the activities of the catalyst with a mesh size of 40 was lower than the other catalysts, suggesting its higher long-term stability (ass). Larger catalyst sizes led to the fouling of carbon and heavy hydrocarbons, decreasing the specific surface of the catalyst, thus increasing the pore diffusion resistance and further decrementing the catalyst activities.  相似文献   
4.
On-site hydrogen production through steam-methane reforming (SMR) from city gas or natural gas is believed to be a cost-effective way for hydrogen-based infrastructure due to high cost of hydrogen transportation. In recent years, there have been a lot of on-site hydrogen fueling stations under design or construction in China. This study introduces current developments and technology prospects of skid-mounted SMR hydrogen generator. Also, technical solutions and economic analysis are discussed based on China's first on-site hydrogen fueling station project in Foshan. The cost of hydrogen product from skid-mounted SMR hydrogen generator is about 23 CNY/kg with 3.24 CNY/Nm3 natural gas. If hydrogen price is 60 CNY/kg, IRR of on-site hydrogen fueling station project reaches to 10.8%. While natural gas price fall to 2.3 CNY/Nm3, the hydrogen cost can be reduced to 18 CNY/kg, and IRR can be raised to 13.1%. The conclusion is that skid-mounted SMR technology has matured and is developing towards more compact and intelligent design, and will be a promising way for hydrogen fueling infrastructures in near future.  相似文献   
5.
We report the study of conductive polyaniline (PANI) chain embedded Ti-MOF functionalized with CoS as a cocatalyst for hydrogen evolution reaction (HER) application. The post synthetically modified hybrid photocatalyst PANI/Ti-MOF/CoS greatly influences the redox and e? ? h+ separation process and exhibits an impressive rate of HER (~1322 μmol h?1g?1), suppressing the pristine Ti-MOF (~62 μmol h?1g?1) with apparent quantum yield (AQY) of ~3.2 and transient current response of ~46.4 μA cm?2. In this system, Ti-MOF provides the circulation of Ti3+ and Ti4+ to the reaction of photocatalytic H2 generation, where the additional PANI and CoS amended the performance of H2 production through electron enrichment and thereby improving the stability and integrity of Ti-MOF. The Electrochemical studies demonstrated increased photocurrent by interweaving Ti-MOF crystal with PANI through cation-π interaction thereby enhancing interface connection and then promoting electron transfers. The charge dynamics revealed the initial charge transfer from photoexcited PANI to encapsulated MOF framework to boost the photocatalytic performance of the system. Further, the electron movement at the Ti-MOF/CoS interface is investigated through work function and electrochemical potential of electrons (Fermi level). DFT results demonstrate the importance of CoS in improving the photocatalytic performance of hybrid Ti-MOF catalyst, which leads to superior catalytic behaviour. These results establish that the encapsulation of catalytic active sites inside MOFs with desirable energy band gaps would be an ideal choice for the production of solar fuels.  相似文献   
6.
A new route of materials synthesis, namely, high-temperature, high-pressure reactive planetary ball milling (HTPRM), is presented. HTPRM allows for the mechanosynthesis of materials at fully controlled temperatures of up to 450 °C and pressures of up to 100 bar of hydrogen. As an example of this application, a successful synthesis of magnesium hydride is presented. The synthesis was performed at controlled temperatures (room temperature (RT), 100, 150, 200, 250, 300, and 325 °C) while milling in a planetary ball mill under hydrogen pressure (>50 bar). Very mild milling conditions (250 rpm) were applied for a total milling time of 2 h, and a milling vial with a relatively small diameter (φ = 53 mm, V = ~0.06 dm3) was used. The effect of different temperatures on the synthesis kinetics and outcome were examined. The particle morphology, phase composition, reaction yield, and particle size were measured and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) techniques. The obtained results showed that increasing the temperature of the process significantly improved the reaction rate, which suggested the great potential of this technique for the mechanochemical synthesis of materials.  相似文献   
7.
The main objective of the present investigation is to conduct the performance, combustion and emission analysis of CI engine operated using hydrogen enriched syngas (pyrolytic gas) and biodiesel (pyrolytic oil) as dual fuel mode condition. Both the pyrolytic oil and syngas is obtained from single feedstock delonix regia fruit pod through pyrolysis process and then pyrolytic oil is converted into biodiesel through esterification. Initially biomass is subjected to thermal degradation at various pyrolysis temperature ranges like 350–600 °C. During the pyrolysis process syngas, pyrolytic oil and char are produced. The syngas is directly used in the CI engine and pyrolytic oil is converted into biodiesel and then used in the CI engine. The pyrolytic oil and syngas is subjected to FTIR and GC/TCD analysis respectively. The syngas analysis confirms the presence of various gases like H2, CH4, CO2, CO and C2H4 in different proportions. The various proportions of the syngas is mainly depending upon the reactor temperature and moisture content in the biomass. The syngas composition varies with increase in the temperature and at 400 °C, higher amount of hydrogen is present and its composition are H2 28.2%, CO is 21.9%, CH4 is 39.1% and other gases in smaller amounts. The biodiesel of B20 and syngas of 8lpm produced from the same feedstock are considered as test sample fuels in the CI engine under dual fuel mode operation to study the performance and emission characteristics. The study reveals that BTE has slight increase than diesel of 1.5% at maximum load. On the another hand emission like CO, HC and smoke are reduced by 15%,25% and 32% respectively at full load condition, whereas NOx emission is increased at all loads in the range of 10–15%. Therefore B20+syngas of 8lpm can be used as an alternative fuel in CI engine without any modification and major products from pyrolysis process with waste biomass is fully used as fuel in the CI engine.  相似文献   
8.
以智能反射面(intelligent reflecting surface,IRS)辅助的无线携能通信(simultaneous wireless information and power transfer,SWIPT)系统为背景,研究了该系统中基于能效优先的多天线发送端有源波束成形与IRS无源波束成形联合设计与优化方法。以最大化接收端的最小能效为优化目标,构造在发送端功率、接收端能量阈值、IRS相移等多约束下的非线性优化问题,用交替方向乘子法(alternating direction method of multipliers,ADMM)求解。采用Dinkelbach算法转化目标函数,通过奇异值分解(singular value decomposition,SVD)和半定松弛(semi-definite relaxation,SDR)得到发送端有源波束成形向量。采用SDR得到IRS相移矩阵与反射波束成形向量。结果表明,该系统显著降低了系统能量收集(energy harvesting,EH)接收端的能量阈值。当系统总电路功耗为?15 dBm时,所提方案的用户能效为300 KB/J。当IRS反射阵源数与发送天线数均为最大值时,系统可达最大能效。  相似文献   
9.
A technology for cyclic generation of hydrogen and oxygen using electrodes made of variable valency material that does not need the use of separating ion-exchange membranes is presented. The technological solution enables to fabricate electrolyzers for uninterrupted producing high-pressure hydrogen with reduced energy intensity of the production. The total work for compressing 1 m3 of hydrogen and 0.5 m3 of oxygen has been estimated. Results of investigation of influence of discrete supply of DC current to the electrolysis cell, in order to improve the processes of gas evolution and to simplify the power systems of the electrolysis plant, have been considered. There is also considered an electrolysis installation equipped with a thermosorption compressor in which LaNi5 is used as a hydride-forming compound. The comparative characteristics of the developed electrolyzer and the currently used hydrogen generators are given.  相似文献   
10.
《Ceramics International》2022,48(9):12281-12290
Following the rapid growth of lightning technology, the development of red-emitting phosphors is effective for improving color temperature and color rendering index for w-LEDs devices. Herein, a single phased garnet phosphor with cation and polyhedron substitution modification was firstly prepared. For Mg3Gd2Ge3O12: Bi3+, Eu3+, the intensity has been remarkably improved by about 16% compared to the one without Bi3+ sensitization. The energy transfer mechanism is identified in this work. Based on cation and polyhedron substitution strategies, novel phosphors with different compositions were obtained and further modified the PL properties. With Lu3+ substitution, the bond lengths between Bi3+ ion and anion ligands are decreased and the site symmetry has been strengthened, which leads to a 21 nm blue shift when Lu3+ totally replaced Gd3+ ions. In addition, Lu3+ and [SiO4] substitution strategies both effectively increased symmetric rigid structure, which leads to a significant improvement in thermal stability, indicating the samples own great potential in optical applications This work provides a new insight to synthesis red-emitting phosphors for warm white-LEDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号