首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77409篇
  免费   6856篇
  国内免费   4751篇
电工技术   2559篇
技术理论   4篇
综合类   4658篇
化学工业   13756篇
金属工艺   1238篇
机械仪表   3227篇
建筑科学   2524篇
矿业工程   2642篇
能源动力   2549篇
轻工业   11284篇
水利工程   972篇
石油天然气   28241篇
武器工业   159篇
无线电   2471篇
一般工业技术   2268篇
冶金工业   1348篇
原子能技术   153篇
自动化技术   8963篇
  2024年   338篇
  2023年   1069篇
  2022年   2078篇
  2021年   2655篇
  2020年   2626篇
  2019年   2474篇
  2018年   2146篇
  2017年   2617篇
  2016年   2871篇
  2015年   2701篇
  2014年   4320篇
  2013年   4665篇
  2012年   5461篇
  2011年   5743篇
  2010年   4079篇
  2009年   3854篇
  2008年   3549篇
  2007年   4443篇
  2006年   4607篇
  2005年   4072篇
  2004年   3568篇
  2003年   3280篇
  2002年   2809篇
  2001年   2354篇
  2000年   2073篇
  1999年   1726篇
  1998年   1413篇
  1997年   1188篇
  1996年   967篇
  1995年   794篇
  1994年   641篇
  1993年   372篇
  1992年   311篇
  1991年   252篇
  1990年   199篇
  1989年   143篇
  1988年   71篇
  1987年   64篇
  1986年   43篇
  1985年   80篇
  1984年   75篇
  1983年   61篇
  1982年   37篇
  1981年   35篇
  1980年   27篇
  1979年   11篇
  1978年   12篇
  1977年   7篇
  1976年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
3.
4.
The International Society for the Study of Vascular Anomalies (ISSVA) provides a classification for vascular anomalies that enables specialists to unambiguously classify diagnoses. This classification is only available in PDF format and is not machine-readable, nor does it provide unique identifiers that allow for structured registration. In this paper, we describe the process of transforming the ISSVA classification into an ontology. We also describe the structure of this ontology, as well as two applications of the ontology using examples from the domain of rare disease research. We used the expertise of an ontology expert and clinician during the development process. We semi-automatically added mappings to relevant external ontologies using automated ontology matching systems and manual assessment by experts. The ISSVA ontology should contribute to making data for vascular anomaly research more Findable, Accessible, Interoperable, and Reusable (FAIR). The ontology is available at https://bioportal.bioontology.org/ontologies/ISSVA.  相似文献   
5.
6.
7.
Soybean oil hydrogenation alters the linolenic acid molecule to prevent the oil from becoming rancid, however, health reports have indicated trans-fat caused by hydrogenation, is not generally regarded as safe. Typical soybeans contain approximately 80 g kg−1 to 120 g kg−1 linolenic acid and 240 g kg−1 of oleic acid. In an effort to accommodate the need for high-quality oil, the United Soybean Board introduced an industry standard for a high oleic acid greater than 750 g kg−1 and linolenic acid less than 30 g kg−1 oil. By combing mutations in the soybean plant at four loci, FAD2-1A and FAD2-1B, oleate desaturase genes and FAD3A and FAD3C, linoleate desaturase genes, and seed oil will not require hydrogenation to prevent oxidation and produce high-quality oil. In 2017 and 2018, a study comparing four near-isogenic lines across multiple Tennessee locations was performed to identify agronomic traits associated with mutations in FAD3A and FAD3C loci, while holding FAD2-1A and FAD2-1B constant in the mutant (high oleic) state. Soybean lines were assessed for yield and oil quality based on mutations at FAD2-1 and FAD3 loci. Variations of wild-type and mutant genotypes were compared at FAD3A and FAD3C loci. Analysis using a generalized linear mixed model in SAS 9.4, indicated no yield drag or other negative agronomic traits associated with the high oleic and low linolenic acid genotype. All four mutations of fad2-1A, fad2-1B, fad3A, and fad3C were determined as necessary to produce a soybean with the new industry standard (>750 g kg−1 oleic and <30 g kg−1 linolenic acid) in a maturity group-IV-Late cultivar for Tennessee growers.  相似文献   
8.
9.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
10.
With the increase of industrialization and urbanization, humankind faces massive oil-based pollution due to tanker accidents, human error, and natural disasters. For this, hydrophobic sorbents are fabricated and their applications for the removal of oil from polluted water sources are investigated. These hydrophobic sorbents are prepared by the condensation reaction of poly(dimethylsiloxane) and tris[3-(trimethoxysilyl)propyl]isocyanurate cross-linker via bulk polymerization. The obtained sorbents exhibit high oil sorption capacity, fast absorption–desorption kinetics, and great reusability. Moreover, they can selectively absorb oil from the water surface, thus making them practical for water clean-up applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号