首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23608篇
  免费   1656篇
  国内免费   885篇
电工技术   488篇
综合类   1109篇
化学工业   5425篇
金属工艺   921篇
机械仪表   1261篇
建筑科学   745篇
矿业工程   345篇
能源动力   1121篇
轻工业   1783篇
水利工程   103篇
石油天然气   555篇
武器工业   99篇
无线电   3970篇
一般工业技术   5774篇
冶金工业   928篇
原子能技术   368篇
自动化技术   1154篇
  2024年   55篇
  2023年   429篇
  2022年   553篇
  2021年   659篇
  2020年   647篇
  2019年   559篇
  2018年   584篇
  2017年   712篇
  2016年   756篇
  2015年   817篇
  2014年   1248篇
  2013年   1319篇
  2012年   1441篇
  2011年   1895篇
  2010年   1229篇
  2009年   1382篇
  2008年   1175篇
  2007年   1345篇
  2006年   1308篇
  2005年   957篇
  2004年   891篇
  2003年   863篇
  2002年   772篇
  2001年   584篇
  2000年   524篇
  1999年   544篇
  1998年   463篇
  1997年   435篇
  1996年   401篇
  1995年   263篇
  1994年   265篇
  1993年   194篇
  1992年   180篇
  1991年   174篇
  1990年   115篇
  1989年   115篇
  1988年   72篇
  1987年   42篇
  1986年   40篇
  1985年   23篇
  1984年   13篇
  1983年   21篇
  1982年   21篇
  1981年   15篇
  1980年   6篇
  1976年   6篇
  1975年   8篇
  1974年   6篇
  1973年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The vanadium hydrides have better hydrogen storage capacity in comparison to the other metal hydrides. Although the structure of VH2 hydride has been reported, the structural stability, electronic and optical properties of VH2 hydride are unclear. To solve these problems, we apply the first-principles method to study the structural stability, electronic and optical properties of VH2 hydrides. Similar to the metal dihydrides, four possible VH2 hydrides such as the cubic (Fm-3m), tetragonal (I4/mmm), tetragonal (P42/mnm) and orthorhombic (Pnma) are designed. The result shows that the cubic VH2 hydride is a thermodynamic and dynamical stability. In particular, the tetragonal (I4/mmm) and the orthorhombic (Pnma) VH2 hydrides are firstly predicted. It is found that these VH2 hydrides show metallic behavior. The electronic interaction of V (d-state)-H (s-state) is beneficial to improve the hydrogen storage in VH2 hydride. In addition, the formation of V–H bond can improve the structural stability of VH2 hydride. Based on the analysis of optical properties, it is found that all VH2 hydrides show the ultraviolet response. Compared to the tetragonal and orthorhombic VH2 hydrides, the cubic VH2 hydride has better storage optical properties. Therefore, we believe that the VH2 hydride is a promising hydrogen storage material.  相似文献   
2.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   
3.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
4.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
5.
《Ceramics International》2022,48(3):3368-3373
Over the recent past, lead-based halide perovskite materials have drawn significant attention due to their excellent optical and electrical properties for solar cells and optoelectronics applications. However, the toxicity of lead elements and instability under ambient conditions leads to develop alternative compositions. Herein, we report a novel mechanochemical synthesis of tin iodide-based double perovskites (A2SnI6; A = Rb+, Cs+, methylammonium, and formamidinium), and their structural, optical, and electrical properties are investigated. Importantly, we found that the hydrogen iodide (HI) addition during the ball-milling process minimizes secondary phase formation in the synthesized A2SnI6 powders. The effects of HI addition and the A-site substitution are investigated with respect to the lattice parameters, optical bandgaps, and electrical properties of the synthesized perovskite materials. Our results demonstrate essential information to improve the understanding of halide perovskite materials and develop efficient lead-free perovskite photoelectric devices.  相似文献   
6.
7.
In this study, the synthesis and luminescence characterization of Samarium (Sm3+) doped lithium metasilicate (Li2SiO3) phosphor ceramic were investigated. It was presented and discussed the results obtained on the luminescence and other optical studies such as X-ray diffraction (XRD), optical absorption and luminescence properties of Li2SiO3:Sm3+ phosphor ceramic. The Li2SiO3 compound was shown a characteristic phase in XRD. The doping in the lithium compound was not having a significant effect on the basic crystal structure of the material. The maximum photoluminescence (PL) emission for Sm3+ doped Li2SiO3 was observed at 554, 583, 641, 725 nm and bore resemblance to the visible region of the spectrum. The glow curves of all synthesized materials have a complex peak structure after being irradiated with a 90Sr–90Y beta source. In addition, the peak between 400 and 600 nm was seen in the radioluminescence (RL) spectrum because of a wide peak thought to be caused by silicate.  相似文献   
8.
This paper reports an investigation on the structure-properties correlation of trivalent metal oxide (Al2O3)-doped V2O5 ceramics synthesized by the melt-quench technique. XRD patterns confirmed a single orthorhombic V2O5 phase formation with increasing strain on the doping of Al2O3 in place of V2O5 in the samples estimated by Williamson-Hall analysis. FTIR and Raman investigations revealed a structural change as [VO5] polyhedra converts into [VO4] polyhedra on the doping of Al2O3 into V2O5. The optical band gap was found in a wide semiconductor range as confirmed by UV–visible spectroscopy analysis. The thermal and conductivity behavior of the prepared samples were studied using thermal gravimetric analysis (TGA) and impedance analyzer, respectively. All the prepared ceramics exhibit good DC conductivity (0.22–0.36 Sm-1) at 400 ?C. These materials can be considered for intermediate temperature solid oxide fuel cell (IT-SOFC)/battery applications due to their good conductivity and good thermal stability.  相似文献   
9.
A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the absorption of heparin after oral administration, in which heparin was compounded with phospholipids to achieve better fat solubility in the form of heparin-phospholipid (HEP-Pc) complex. HEP-Pc complex was prepared using the solvent evaporation method, which increased the solubility of heparin in n-octanol. The successful preparation of HEP-Pc complex was confirmed by differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, NMR, and SEM. A heparin lipid microemulsion (HEP-LM) was prepared by high-pressure homogenization and characterized. HEP-LM can enhance the absorption of heparin after oral administration, significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) in mice, and reduce fibrinogen (FIB) content. All these outcomes indicate that HEP-LM has great potential as an oral heparin formulation.  相似文献   
10.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号